高考数学复习点拨 “命题的否定”与“否命题”_第1页
高考数学复习点拨 “命题的否定”与“否命题”_第2页
高考数学复习点拨 “命题的否定”与“否命题”_第3页
高考数学复习点拨 “命题的否定”与“否命题”_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用心 爱心 专心1 命题的否定命题的否定 与与 否命题否命题 命题的否定 非或 与 否命题 是高中数学的难点 准确无误地理解和pp 写出一个命题的否定形式和否命题是解决许多问题的关键 一 命题一 命题 若若 则 则 的否命题与命题的否定形式的否命题与命题的否定形式AB 设命题 若 则 为原命题 那么 若非 则非 就叫做原命题的否命ABAB 题 否命题只是 若 则 命题的四种形式中的一种 如果一个命题不能化为 若 则 形式 那么该命题就没有讨论否命题的可能 对于命题 非叫做命pp 题的否定 记作 任何一个命题都有否定形式 命题 若 则 的否定形式pp AB 为 若 则非 显然 否命题 是对原命题的条件和结论同时否定 命题的否定 AB 只是否定命题的结论 即 命题的否定 与原命题的条件相同 结论相反 例例 1 1 命题 若 的否命题为 2005 江苏高考 122 ba ba 则 分析 本题考查的是由原命题写出其否命题 既要否定命题的条件又要否定其结论 解 由题意原命题的否命题为 若 122 ba ba 则 评注 该命题的否定形式为 若 只是否定原命题的结论 122 ba ba 则 例例 2 2 写出下列命题的否定形式及其否命题 1 若且 则 2 若 则 全为 3 x2 y5 yx0 yxxy0 解 1 命题的否定为 若且 则 3 x2 y5 yx 否命题为 若或 则 3 x2 y5 yx 2 命题的否定为 若 则 不全为 0 yxxy0 否命题为 若 则 不全为 0 yxxy0 如果一个命题不是 若 则 的形式 可以将其改写成 若 则 形式 的命题 使原命题的条件和结论更加明确 便于写出命题的否定形式及其否命题 这种 改 写 的形式有时不是惟一的 因此 同一命题的否定形式也可能不一样 例例 3 3 将下列命题改写成 若 则 的形式 并写出它们的否命题与否定形式 AB 1 对角线互相垂直的四边形是菱形 2 时 函数的值随值的增加而增加 0 abaxy x 解 1 原命题可改写为 若一个四边形的两条对角线互相垂直 则它是菱形 否命题为 若一个四边形的两条对角线不互相垂直 则它不是菱形 否定形式 为 若一个四边形的两条对角线互相垂直 则它不是菱形 p 2 原命题可改写为 时 若增加 则函数的值也随着增加 0 axbaxy 用心 爱心 专心2 否命题为 时 若不增加 则函数的值也不增加 0 axbaxy 否定形式 为 时 若增加 则函数的值不增加 p 0 axbaxy 原命题也可改写为 当增加时 若 则函数的值也增加 x0 abaxy 否命题为 当增加时 若 则函数的值不增加 x0 abaxy 否定形式 为 当增加时 若 则函数的值不增加 p x0 abaxy 评注 1 有些命题由三部分组成 大前提 条件和结论 正确地分析命题的结构是解决此 类问题的关键 2 准确把握和正确写出一个命题的否定形式与否命题的关键是能否将命题中的关键 词语写成它的否定词语 常用词语的否定如下表 正面词语反面词语正面词语反面词语 等于不等于且或 大于不大于 或小于等于 或且 小于不小于 或大于等于 至多有一个至少两个 是不是至多有个n至少有个1 n 一定是一定不是至少有一个一个也没有 都是 不都是 至少有一个不是 至少有个n至多有个1 n 必有一个一个也没有所有成立x存在一个不成立x 任意的某一个存在不存在 二 不能转化成二 不能转化成 若若 则 则 形式的命题的否定形式形式的命题的否定形式AB 除了可以转化为 若 则 形式的命题外 其它不能转化成 若 则 形ABAB 式的命题都有其相应的否定形式 根据命题本身形式的不同 可以分为以下几类 1 1 简单命题的否定简单命题的否定 不含逻辑联结词 或 且 非 的命题称为简单命题 它应被看作是一个不 可再分割的整体 其最简单的命题形式是 是 它的否定形式是 不是 pABAB 或 并非是 其中是一个特定对象 ABA 例例 4 4 写出下列命题的否定 即非 p 1 是方程的根 2 四条边都相等的四边形不是正方形 204 2 x 3 正数的绝对值是它本身 4 方程有两个相等的实根 023 2 xx 5 都是 ab1 解 1 命题的否定形式为 不是方程的根 204 2 x 2 命题的否定形式为 四条边都相等的四边形不都是正方形 3 命题的否定形式为 正数的绝对值不是它本身 4 命题的否定形式为 方程没有两个相等的实根023 2 xx 5 命题的否定形式为 不都是 或者 或 ab11 a1 b 评注 是 的否定有时为 不是 有时为 不都是 要视 是 的含义而定 2 2 复合命题的否定复合命题的否定 用心 爱心 专心3 由简单命题与逻辑联结词 或 且 非 构成的命题是复合命题 或 pq 且 非 形式的命题中 都是命题 命题 或 的否定为 且pqppqpqp 命题 且 的否定为 或 命题 非 的否定为 就是命q pqp q p p 题 所以 命题 非 与命题 互为否定形式 ppp 例例 5 5 写出下列命题的否定 1 2 且 58 5 a1 b 3 是的约数且是的约数 4 是偶数或奇数 2683 解 1 命题的否定形式为 不大于且不等于即 原命题属于 或 858558 pq 型 2 命题的否定形式为 且 原命题属于 且 型 5 a1 bpq 3 命题的否定形式为 不是的约数或不是的约数 原命题属于 且 型 2628pq 4 命题的否定形式为 不是偶数且不是奇数 原命题属于 或 型 33pq 评注 1 需要说明的是 常用的 或 有两种意义 可兼的和不可兼的 而在复合命题中 的 或 是可兼的 2 或 且 非 形式出现在 若 则 形式的命题中 该命pqpqpAB 题的否定或否命题的写法规则相同 例如例 2 中第 1 小题的解法 3 3 含有一个量词的命题的否定含有一个量词的命题的否定 对含有一个量词的命题的否定 应根据命题中所叙述的对象的特征 挖掘其呈现的或 隐含的量词 命题中出现 全部 所有 一切 任何 任意 每一个 等与 存在着 有 有些 某个 至少有一个 等的词语 在逻辑中分 别称为全称量词与存在性量词 用符号分别记为 与 来表示 由这样的量 词构成的命题分别称为全称命题与存在性命题 全称命题 的否定为 存在性命题Mx xpMx xp 的否定 解题时就是把命题中的全称量词改成Mx xpMx xp p 存在性量词 存在性量词改成全称量词 并把量词的作用范围进行否定 例例 6 6 写出下列命题的否定 1 2 有些三角形是直角三角形 Rx 01 2 xx 3 不存在实数 4 对任意的 都有 xxx21 2 Ax 2 xf 5 正数的绝对值是它本身 6 可以被 5 整除的整数 末位是 0 解 1 命题的否定为 不存在 使 即 Rx 01 2 xx Rx 01 2 xx 用心 爱心 专心4 2 命题的否定为 没有一个三角形是直角三角形 即所有三角形都不是直角三角形 在 这里 不是用 不 否定 是 而是用 无 否定 有些是 3 命题的否定为 并非 不存在实数 即存在实数 xxx21 2 xxx21 2 4 命题的否定为 总存在 使得或无意义 抽象函数需要考虑函数Ax 2 xf xf 的定义范围 5 命题的否定为 有的正数的绝对值不是它本身 6 命题的否定为 存在可以被整除的整数 其末位不是 50 评注 1 解题中遇到省略量词的命题时 应先挖掘命题中隐含的量词 改写成含量词的命

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论