正弦定理证明_第1页
正弦定理证明_第2页
正弦定理证明_第3页
正弦定理证明_第4页
正弦定理证明_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

正弦定理的证明解读正弦定理的证明解读 克拉玛依市高级中学克拉玛依市高级中学 曾艳曾艳 一 正弦定理的几种证明方法一 正弦定理的几种证明方法 1 利用三角形的高证明正弦定理利用三角形的高证明正弦定理 1 当ABC 是锐角三角形时 设边 AB 上的高是 CD 根据锐角三角函数的定 义 有 si nC DaBsinCDbA 由此 得 同理可得 si nsi n ab AB si nsi n cb CB 故有 从而这个结论在锐角三角形中成立 si nsi n ab AB si n c C 2 当ABC 是钝角三角形时 过点 C 作 AB 边上的高 交 AB 的延长线于点 D 根据锐角三角函数的定义 有 si nsi nC DaC BDaABCsinCDbA 由此 得 同理可得 si nsi n ab AABC si nsi n cb CABC 故有 si nsi n ab AABCsi n c C 由 1 2 可知 在ABC 中 成立 si nsi n ab AB si n c C 从而得到 在一个三角形中 各边和它所对角的正弦的比值相等 即 si nsi n ab AB si n c C 1 用知识的最近生长点来证明 实际应用问题中 我们常遇到问题 已知点 A 点 B 之间的距 AB 可测量角 A 与角 B 需要定位点 C 即 在如图 ABC 中 已知角 A 角 B AB c 求边 AC 的长 b 解 过 C 作 CD AB 交 AB 于 D 则 cosADcA sinsincos sin tansin cos BDcAcAC DC C CC C sincos sincossincos sin cos sinsinsin cACcCAACcB bACADDCcA CCC 推论 推论 sinsin bc BC 同理可证 同理可证 sinsinsin abc ABC ab D A B C A B C D b a 2 利用三角形面积证明正弦定理利用三角形面积证明正弦定理 已知 ABC 设 BC a CA b AB c 作 AD BC 垂足为 D 则 Rt ADB 中 AD AB sinB csinB AB AD B sin S ABC 同理 可证 S ABC BacADasin 2 1 2 1 AbcCabsin 2 1 sin 2 1 S ABC absinc bcsinA acsinB BacAbcCabsin 2 1 sin 2 1 sin 2 1 在等式两端同除以 ABC 可得 即 b B a A c Csinsinsin C c B b A a sinsinsin 3 向量法证明正弦定理向量法证明正弦定理 1 ABC 为锐角三角形 过点 A 作单位向量 j 垂直于 则 j 与的夹角为ACAB 90 A j 与的夹角为 90 C 由向量的加法原则可得 CBABCBAC 为了与图中有关角的三角函数建立联系 我们在上面向量等式的两边同取与向量 j 的数量积运算 得到 ABjCBACj 由分配律可得 B ABjCBjAC j Cos90 j Cos 90 C j Cos 90 A j ACCBAB asinC csinA A C c A a sinsin 另外 过点 C 作与垂直的单位向量 j 则 j 与的夹角为 90 C j 与的夹CBACAB 角为 90 B 可得 B b C c sinsin 此处应强调学生注意两向量夹角是以同起点为前提 防止误解为 j 与的夹AC 角为 90 C j 与的夹角为 90 B AB C c B b A a sinsinsin 2 ABC 为钝角三角形 不妨设 A 90 过点 A 作与垂直的单位向量 j 则 jAC 与的夹角为 A 90 j 与的夹角为 90 C ABCB 由 得 j j j jABCBAC ACCBAB 即 a Cos 90 C c Cos A 90 asinC csinA C c A a sinsin D C B A A C C BA 另外 过点 C 作与垂直的单位向量 j 则 j 与的夹角为 90 C j 与夹CBACAB 角为 90 B 同理 可得 C c B b sinsin C c B b simA a sinsin 4 外接圆证明正弦定理外接圆证明正弦定理 在 ABC 中 已知 BC a AC b AB c 作 ABC 的外接圆 O 为圆心 连结 BO 并延长交圆于 B 设 BB 2R 则根据直径所对的圆周角是直角以及同弧 所对的圆周角相等可以得到 BAB 90 C B sinC sinB R c BC 2 sinsin R C c 2 sin 同理 可得 R B b R A a 2 sin 2 sin R C c B b A a 2 sinsinsin 这就是说 对于任意的三角形 我们得到等式 C c B b A a sinsinsin 二 剖析四种证明方法的本质联系二 剖析四种证明方法的本质联系 虽然正弦定理的有四种证明方法 也可以看成 5 种 对于第一种证明方法 也可以用向量的形式来表示 可以看成向量 向量在向量方向上的CACBCD 投影相等 虽然每种证明方法都用不同的数学知识从不同的角度去证明了正弦 定理 但是仔细观察会发现有一条纽带一直联系在正弦定理的各种证明方法之 间 可以说每一种证明方法离开这条纽带都是没办法成立的 这条纽带就是 直角三角形思想 正弦定理的四种证明方法 在正弦定理的第一种证明方法中 用到的就是最基本的通过三角形作高把斜三角形转化为直角三角形 第二面积 法 三角形的面积等于低乘高 也是把一般的三角形问题转化为垂直关系来研 究 第三种向量法用到的也是向量的垂直关系 第四种外接圆法也借助了直径 所对的圆周角等于这个特殊的直角三角形 都是利用了直角三角形 余弦 0 90 定理的平面几何证明方法 也是利用三角形做高转化成直角三角形来证明 在 没学正余弦定理之前 学生直接利用初中的知识来解斜三角形 也是转化成直 角三角形来解 从这其中我们可以发现直角三角形它那不可替代的特殊作用 所以 我觉得正弦定理的四种证明方法的本质联系就是 直角三角形 其实 研究正余弦定理就是为了解斜三角形 在没有正余弦定理之前 我 们只能够解直角三角形 而正弦定理的发现也是借助于直角三角形 通过直角 三角形边角的关系发现了正弦定理 而我们要证明正弦定理必须得借助已经学 过的知识 而在没有学习正余弦定理之前 我们仅能解得就是直角三角形 所 以正弦定理的各种证明方法都是通过建立构造和解直角三角形的基础之上 所 以正弦定理的各种证明方法都会或多或少的借助 垂直 的关系 三 我对正弦定理证明的一点想法三 我对正弦定理证明的一点想法 1 对于正弦定理的四种证明方法 我认为作高法和面积法是学生比较容易 接受的方法 因为正弦定理的发现也好 或是初中同学们对三角形的认识也好 对于一般三角形问题通过作高转化成直角三角形问题是大家都很熟悉的 所以 接受起来特别的容易 所以用作高来证明正弦定理是最容易被学生接受和掌握 的方法 而有了作高证明正弦定理的方法以后 要用面积法学生接受起来也就 不会存在很大的困难 因为所有的学生都知道 三角形的面积等于低乘高 所 以作出三角形的高以后 通过老师的恰当引导 学生很容易就能联想到三角形 的面积等于低乘高 从而也就较容易接受和掌握面积法证明正弦定理 而对于 向量法证明几何问题学生相对比较生疏 所以不容易马上联想到 那么接受起 来也就没有前面的方法那么容易 所以 我觉得向量法是四种方法中学生比较 不容易联想到的一种方法 2 对于正弦定理的四种证明方法 没有必要让学生全部掌握 我们可以 根据自己的教学特点和学生的实际需要选择合适的方法即可 但是 不管我们 要选择那一种证明方法 都必须设置相应适合的教学活动 让学生能够更能理 解定理的证明 并且能够培养学生一些分析问题解决问题的能力 下面针对几 种证明方法谈谈我自己的教学活动上的一些想法 为了让学生能够理解为什么要通过做高来证明正弦定理 我们可以在讲定理之 前设计一个斜三角形问题 然后引导学生利用做高转化为直角三角形问题来解 例 如 已知 ABC 中 求边和边的长 10ckm 45A 105B ba 学生通过对这个三角形的求解过程会发现斜三角形 问题可以转化为直角三角形来求解 那么通过直角三角形推导出正弦定理需要 证明在锐角三角形和 直角三角形中是否成立的时候 学生就会很自然的联想到斜三角形可以通过做 高转化成直角三角形问题 从而 做高法证明正弦定理就很容的被学生接受和 掌握 而有了做高法做铺垫 可以引导学生联想到三角形的面积等于低乘高 从而引出面积法证明正弦定理 并能得到三角形 ABC 的面积 111 sinsinsin 222 SabCbcAacB 如果要用外接圆法来证明正弦定理 我觉得从特殊的直角三角形入手是一 个比较不错的方法 正弦定理等于一个常数 那么这个常 sinsinsin abc ABC 数是什么呢 它和三角形 ABC 有什么关系 引导学生发现在直角三角形 C 中有 c 这个常数刚好是直角三角形的斜边 从而可 0 90 sinsinsin abc ABC 以引导学生发现直角三角形的斜边就是其外接圆的直径 从而引出外接圆法证 明余弦定理 并得到 sinsinsin abc ABC R2 对于要用向量的方法来证明正弦定理 我觉得设置这样的几个问题可能效 果也不错 问题 1 在我们学过的知识当中 还有那些知识是和长度 角度之 间有密切联系的 学生马上会想到向量的数量积 问题 2 在三角形 ABC 中 如果把三条边用向量来表示 他们之间会有什么样的关系 学生会联想到向 量加法的三角形法则 问题 3 如何用向量的方法来证明正弦定理呢 学生 可能不会马上想到 那么可以再设置一个问题 问题 4 从前面学过的证明方 法会给你什么启示吗 我觉得做高法这个比较容易接受的方法基本上老师都 会讲 所以学生在做高法的引导下对于做垂直向量就比较容易接受了 有了 这四个问题做铺垫 那么对于利用向量方法来证明正弦定理 学生接受起来应 该不会难 从教学实际上来看 学生求解更容易让学生接受 而且我们可以从知识的 最近生长点 三角变换与解直角三角形 来引入解斜三角形 可能证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论