解直角三角形_第1页
解直角三角形_第2页
解直角三角形_第3页
解直角三角形_第4页
解直角三角形_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学 下册 锐角三角函数 教材分析 本章包括锐角三角函数的概念 主要是正弦 余弦和正切的概 念 以及利用锐角三角函数解直角三角形等内容 锐角三角函数为 解直角三角形提供了有效的工具 解直角三角形在实际当中有着广 泛的应用 这也为锐角三角函数提供了与实际联系的机会 研究锐 角三角函数的直接基础是相似三角形的一些结论 解直角三角形主 要依赖锐角三角函数和勾股定理等内容 因此相似三角形和勾股定 理等是学习本章的直接基础 本章重点是锐角三角函数的概念和直角三角形的解法 锐角三 角函数的概念既是本章的难点 也是学习本章的关键 难点在于 锐角三角函数的概念反映了角度与数值之间对应的函数关系 这种 角与数之间的对应关系 以及用含有几个字母的符号 sin A cos A tan A表示函数等 学生过去没有接触过 所以对学生来讲有一 定难度 至于关键 因为只有正确掌握了锐角三角函数的概念 才 能真正理解直角三角形中边 角之间的关系 从而才能利用这些关 系解直角三角形 一 教科书内容与课程学习目标 一 本章知识结构框图 本章知识的展开顺序如下所示 二 教科书内容 本章内容分为两节 第一节主要学习正弦 余弦和正切等锐角 三角函数的概念 第二节主要研究直角三角形中的边角关系和解直 角三角形的内容 第一节内容是第二节的基础 第二节是第一节的 应用 并对第一节的学习有巩固和提高的作用 在1节 锐角三角函数 中 教科书先研究了正弦函数 然后 在正弦函数的基础上给出余弦函数和正切函数的概念 对于正弦函 数 教科书首先设置了一个实际问题 把这个实际问题抽象成数学 问题 就是在直角三角形中 已知一个锐角和这个锐角的对边求斜 边的问题 由于这个锐角是一个特殊的30 角 所以可以利用 在直 角三角形中 30 角所对的边是斜边的一半 这个结论来解决这个 问题 接下去教科书又提出问题 如果30 角所对的边的长度发生改 变 那么斜边的长变为多少 解决这个的问题仍然需要利用上述结 论 这样就能够使学生体会到 无论直角三角形的大小如何 30 角 所对的边与斜边的比总是一个常数 这里体现了函数的对应思想 即30 角对应数值 接下去 教科书又设置一个 思考 栏目 让学 生进一步探讨在直角三角形中 45 角所对的边与斜边的比有什么特 点 利用勾股定理就可以发现这个比值也是一个常数 这样就使学 生认识到 无论直角三角形的大小如何 45 角所对的边与斜边的比 总是一个常数 通过探讨上面这两个特殊的直角三角形 能够使 学生感受到在直角三角形中 如果一个锐角的度数分别是30 和45 那么它们所对的边与斜边的比都是常数 这里体现了函数的思想 也为引出正弦函数的概念作了铺垫 有了上面这样的感受 会使学 生自然地想到 在直角三角形中 一个锐角取其他一定的度数时 它的对边与斜边的比是否也是常数的问题 这样教科书就进入对一 般情况的讨论 对于这个问题 教科书设置了一个 探究 栏目 让学生探究对于两个大小不等的直角三角形 如果有一个锐角对应 相等 那么这两个相等的锐角所对的直角边与斜边的比是否相等 利用相似三角形对应边成比例这个结论就可以得到 在直角三角形 中 当锐角的度数一定时 不管三角形的大小如何 这个角的对边 与斜边的比是一个固定值 由此引出正弦函数的概念 这样引出 正弦函数的概念 能够使学生充分感受到函数的思想 即在直角三 角形中 对一个锐角的每一个确定的值 sin A都有唯一确定的值与 它对应 在引出正弦函数的概念之后 教科书在一个 探究 栏目 中 类比正弦的概念 从边与边的比的角度提出一个开放性问题 在直角三角形中 当一个锐角确定时 这个角的对边与斜边的比就 随之确定 此时 其他边之间的比是否也确定了呢 提出这个问题 的目的是要引出对余弦函数和正切函数的讨论 由于教科书比较详 细地讨论了正弦函数的概念 所以对余弦函数和正切函数概念的讨 论采用了直接给出的方式 具体的讨论由学生类比正弦函数自己完 成 在余弦函数和正切函数的概念给出之后 教科书在边注中分析 了锐角三角函数的角与数值之间的对应关系 突出了函数的思想 一些特殊角的三角函数值是经常用到的 教科书借助于学生熟悉的 两种三角尺研究了30 45 60 角的正弦 余弦和正切值 并以例 题的形式介绍了已知锐角三角函数值求锐角的问题 当然这时所要 求出的角都是30 45 和60 这些特殊角 教科书把求特殊角的三角 函数值和已知特殊角的三角函数值求角这两个相反方向的问题安排 在一起 目的是体现锐角三角函数中角与函数值之间的对应关系 本节最后 教科书介绍了如何使用计算器求非特殊角的三角函数值 以及如何根据三角函数值求对应的角等内容 由于不同的计算器操 作步骤有所不同 教科书只就常见的情况进行介绍 2节 解直角三角形 是在第一节 锐角三角函数 的基础上研 究解直角三角形的方法及其在实际中的应用 本节开始 教科书设 计了一个实际背景 其中包括两个实际问题 这两个实际问题抽象 成数学问题分别是已知直角三角形的一个锐角和斜边求这个角的对 边与已知直角三角形的一条直角边和斜边求这两个边的夹角的问题 解决这两个问题需要用到28 1节学习的有关正弦函数和余弦函数的 内容 这两个问题实际上属于求解直角三角形的问题 设计这个实 际问题的目的是要引出解直角三角形的内容 因此 教科书借助于 这个实际问题背景 设计了一个 探究 栏目 要求学生探讨在直 角三角形中 根据两个已知条件 其中至少有一个是边 求解直角 三角形 最后教科书归纳给出求解直角三角形常用的反映三边关系 的勾股定理 反映锐角之间关系的互余关系 以及反映边角之间关 系的锐角三角函数关系 这样 教科书就结合实际问题背景 探讨 了解直角三角形的内容 接下去 教科书又结合四个实际问题介绍 了解直角三角形的理论在实际中的应用 第一个实际问题是章前引 言中提到的确定比萨斜塔倾斜程度的问题 这个问题实际上是已知 直角三角形的斜边和一个锐角的对边 求这个锐角的问题 这要用 到正弦函数 第二个问题是确定 神舟 五号变轨后 所能看到地 面的最大距离 这个问题实际上是已知直角三角形的斜边和一个锐 角的邻边 求这个锐角的问题 这要用到余弦函数 第三个问题是 确定楼房高度的问题 这个问题抽象成数学问题是已知直角三角形 的一个锐角和它的邻边 求这个角的对边 这要用到正切函数 第 四个实际问题是在航海中确定轮船距离灯塔的距离 解决这个问题 需要反复利用正弦函数 本节最后 教科书采用将测量大坝的高度 与测量山的高度相对比的方式 直观形象地介绍了 化整为零 积 零为整 化曲为直 以直代曲 的微积分的基本思想 三 课程学习目标 对于本章内容 教学中应达到以下几方面要求 1 了解锐角三角函数的概念 能够正确应用sin A cos A tan A表示直角三角形中两边的比 记忆30 45 60 的正弦 余弦和 正切的函数值 并会由一个特殊角的三角函数值说出这个角 2 能够正确地使用计算器 由已知锐角求出它的三角函数值 由已知三角函数值求出相应的锐角 3 理解直角三角形中边与边的关系 角与角的关系和边与角的 关系 会运用勾股定理 直角三角形的两个锐角互余以及锐角三角 函数解直角三角形 并会用解直角三角形的有关知识解决简单的实 际问题 4 通过锐角三角函数的学习 进一步认识函数 体会函数的变 化与对应的思想 通过解直角三角形的学习 体会数学在解决实际 问题中的作用 并结合实际问题对微积分的思想有所感受 二 本章编写特点 一 加强与实际的联系 本章主要包括锐角三角函数和解直角三角形两大块内容 这两 大块内容是紧密联系的 锐角三角函数是解直角三角形的基础 解 直角三角形的理论又为解决一些实际问题提供了强有力的工具 解 直角三角形为锐角三角函数提供了与实际紧密联系的沃土 因此本 章编写时 加强了锐角三角函数与解直角三角形两大块内容与实际 的联系 例如 在章前引言中利用确定山坡上所铺设的水管的长度 问题引出正弦函数 结合使用梯子攀登墙面问题引出解直角三角形 的概念和方法 等等 再有 教科书利用背景丰富有趣的四个实际 问题 从不同的角度展示了解直角三角形在实际中的广泛应用 教 科书这样将锐角三角函数和解直角三角形的内容与实际问题紧密联 系 形成 你中有我 我中有你 的格局 一方面可以让学生体会 锐角三角函数和解直角三角形的理论来源于实际 是实际的需要 另一方面也让学生看到它们在解决实际问题中所起的作用 感受由 实际问题抽象出数学问题 通过解决数学问题得到数学问题的答案 再回到实际问题的这种实践 理论 实践的认识过程 这个认识过 程符合人的认知规律 有利于调动学生学习数学的积极性 丰富有 趣的实际问题也能够激发学生的学习兴趣 二 加大学生的思维空间 发展学生的思维能力 本章编写时一方面继续保持原有的通过设置 观察 思考 讨论 探究 归纳 等栏目来扩大学生探索交流的空间 发 展学生的思维能力 同时结合本章内容的特点 又考虑到学生的年 龄特征 学习本章内容的学生已经是九年级 对于本章的一些结 论 教科书采用了先设置一些探究性活动栏目 然后直接给出结论 的做法 而将数学结论的探索过程完全留给学生 不像前两个年级 那样 将这些探究过程通过填空或留白等方式引导学生进行探究 例如 教科书在详细研究了正弦函数 给出正弦函数的概念之后 设置了一个 探究 栏目 并提出问题 在直角三角形中 当一 个锐角确定时 它的对边与斜边的比就随之确定 那么 此时其他 边之间的比是否也确定了呢 为什么 接下去 教科书直接给出 了余弦函数和正切函数的概念 而将 邻边与斜边的比 对边与邻 边的比也分别是确定的 这个结论的探究过程完全留给学生自己完 成 再如 对于30 45 60 这几个特殊角的三角函数值 教科书 也是首先设置一个 思考 栏目 在栏目中提出问题 两块三角尺 中有几个不同的锐角 分别求出这几个锐角的正弦值 余弦值和正 切值 然后教科书用一个表格直接给出了这几个特殊角的三角函 数值 而将这些角的三角函数值的求解过程留给学生完成 这样的 一种编写方式就为学生提供了更加广阔的探索空间 开阔思路 发 展学生的思维能力 有效改变学生的学习方式 三 揭示数学内容的本质 本章的一个教学目标是使学生理解锐角三角函数的概念 这个 概念与学生以前所学的一次函数 反比例函数和二次函数有所不同 它反映的不是数值与数值的对应关系 而是角度与数值之间的对应 关系 学生初次接触这种对应关系 理解起来有一定困难 而这种 对应关系对学生深刻理解函数的概念又有很大帮助 因此 教科书 针对这种情况 加强了对锐角三角函数所反映的角度与数值之间的 对应关系的刻画 例如 对于正弦函数 教科书首先研究了在直角 三角形中 30 和45 的锐角所对的边与斜边的比分别是常数和 然 后就一般情况进行研究 并得出结论 当一个锐角的度数一定时 这个角的对边与斜边的比也是一个常数 这样就突出了锐角与比值 的对应关系 即对于每一个锐角 都有一个比值与之对应 从而给 出正弦函数的定义 同样 教科书在阐述余弦函数和正切函数时也 突出了锐角与 邻边与斜边的比值 之间的对应关系以及锐角与 对边和邻边的比值 之间的对应关系 并在边注进一步强调了这 种函数关系 对于锐角A的每一个确定的值 sin A有唯一确定的值 与它对应 所以sin A是A的函数 同样地 cos A tan A也是A的函 数 这样 就可以让学生对变量的性质以及变量之间的对应关系有 更深刻的认识 加深对函数概念的理解 微积分的思想在数学中占有重要的地位 其基本思想是 化整为零 积零为整 化曲为直 以直代曲 这个基本思想是很朴素的 是可以在初等数学中得到反映的 教科书在本章最后 结合解直角 三角形的内容 采用与测量大坝的高度和测量山的高度相对比的方 式 直观形象地介绍了在确定山的高度时 如何将山坡 化整为零 如何将山坡的长度 化曲为直 以直代曲 又如何将每一部分 的高度 积零为整 这样编写的目的是要体现微积分的基本思想 让学生通过直观形象的例子对微积分的基本思想有一个初步的认识 综上所述 本章编写时注意突出数学内容的本质 强调数学思想方 法 这有助于提高学生的数学素养 三 几个值得关注的问题 一 注意加强知识间的纵向联系 相似 为本章研究锐角三角函数打下了基础 因为利用 相 似三角形的对应边成比例 可以解释锐角三角函数定义的合理性 例如 教科书在研究正弦函数的概念时 利用了 在直角三角形中 30 所对的边等于斜边的一半 得出了 在一个直角三角形中 如 果一个锐角等于30 那么不管三角形的大小如何 这个角的对边与 斜边的比值都等于 事实上 在直角三角形中 如果一个角等于 30 那么这样的直角三角形都相似 因此 不管这样的三角形的大 小如何 它们的对应边都成比例 这也就是说 对于sin 30 虽 然教科书是从两个特殊的直角三角形 30 的对边分别是70和50 归纳得到的 但这个结论是可以从三角形相似的角度来解释的 同 样 对于45 也有类似的情况 当然 教科书利用相似三角形的有关 结论解释了在一般情形中正弦定义的合理性 因此 锐角三角函数 的内容与相似三角形是密切联系的 教学中要注意加强两者之间的 联系 全等三角形的有关理论对理解本章内容有积极的作用 例如 在研究解直角三角形时 教科书通过探索得到结论 事实上 在直 角三角形的六个元素中 除了直角 如果再知道两个元素 其中至 少有一个是边 这个三角形就确定下来了 这样就可以由已知的 两个元素求出其余的三个元素 这个结论的获得实际上利用了直角 三角形全等的有关理论 因为对于两个直角三角形 如果已知两个 元素对应相等 并且其中有一个元素是边 那么这两个直角三角形 就全等 也就是已知一个直角三角形的除直角外的两个元素 其中 至少有一个是边 这个三角形就确定下来 所以就可以利用这两个 元素求出其余的元素 因此 利用三角形全等的理论 有利于理解 解直角三角形的相关内容 教学中要注意加强知识间的相互联系 使学生的学习形成正迁移 另外 本章所研究的锐角三角函数反映了锐角与数值之间的函数关 系 这虽然与一次函数 反比例函数以及二次函数所反映的数值与 数值之间的对应关系有所不同 但它们都反映了变量之间的对应关 系 本质上是一致的 教学时 要注意让学生体会这些不同函数之 间的共同特征 更好地理解函数的概念 二 注意数形结合 自然体现数与形之间的联系 数形结合是重要的数学思想和数学方法 本章内容又是数形结 合的很理想的材料 例如 对于锐角三角函数的概念 教科书是利 用学生对直角三角形的认识 在直角三角形中 30 所对的边等于斜 边的一半 45 的直角三角形是等腰直角三角形 以及相似三角形的 有关知识引入的 结合几何图形来定义锐角三角函数的概念 将数 形结合起来 有利于学生理解锐角三角函数的本质 再比如 解直 角三角形在实际中有着广泛的作用 在将这些实际问题抽象成数学 问题并利用锐角三角函数解直角三角形时 离不开几何图形 这时 往往需要根据题意画出几何图形 通过分析几何图形得到边 角等 的关系 再通过计算 推理等使实际问题得到解决 因此在本章教 学时 要注意加强数形结合 在引入概念 推理论述 化简计算 解决实际问题时 都要尽量画图帮助分析 通过图形帮助找到直角 三角形的边 角之间的关系 加深对直角三角形本质的理解 课 堂 教 学 设 计 课题 锐角三角函数 1 正弦 教学 内容 分析 教科书首先设置了一个实际问题 把这个实际问题抽象成数学问题 通过 思考 探究 得到 在直角三角形中 当锐角的度数一定时 不管三角形的 大小如何 这个角的对边与斜边的比是一个固定值 由此引出正弦函数的 概念 知识 与技能 1 经历当直角三角形的锐角固定时 它的对边与斜边的比值都固 定 即正弦值不变 这一事实 从而理解正弦的概念 2 能根据正弦概念正确进行计算 过程 与方法 通过思考和探究 让学生发现 这个角的对边与斜边的比是一个 固定值 的过程 教 学 目 标 情感态度 价值观 引导学生通过探索数量的比值关系 发现规律 从而培养学习数 学的兴趣 学情 分析 学生初次接触 正弦 的概念 是很难理解的 注意加强对数量关系的比较 分析 教学 重点 理解正弦 sinA 概念 知道当直角三角形的锐角固定时 它的 对边与斜边的比值是固定值 难点 当直角三角形的锐角固定时 它的对边与斜边的比值是固定值 的事实 教 学 分 析 教学 难点 解决 办法 结合图形 从实际例子入手 引导学生仔细观察 比较 分析 总结规律 教学 策略 谈话 讨论 交流 仔细比较 认真分析 教学 资源 教材 教师教学用书 中学教材全解 与教材配套的练习册 板锐角三角函数 1 正弦 书 设 计 一 讨论交流 结论 直角三角形中 30 角的对边与斜边的比值 直角三角形中 45 角的对边与斜边的比值 在直角三角形中 当锐角 A 的度数一定时 不管三角形的大小 如何 A 的对边与斜边的比 二 正弦函数概念 规定 在 Rt ABC 中 C 90 A 的对边记作 a B 的对边记作 b C 的对边记作 c 在 Rt ABC 中 C 90 我们把锐角 A 的对边与斜边的比叫做 A 的正 弦 记作 sinA 即 sinA a c sinA Aa Ac 的对边 的斜边 教学环节教师活动学生活动 教学媒体使用 预期效果 导入新课 阅读教材73页引言部分 导 入新知识 揭示学习 目标 教师口述学习目标 学生自学 教师巡视 个别指导学生阅读教材第74 至76页内容 检测 反 馈 1 教师问 74页思考 75页思考 1 学生一边思考 一边回答 2 请一名学生板 75页探究 回顾三角形 相似的判断方法 2 师生归纳 正弦函数概念 3 教师强调解题的书写格式 书75页探究的依据 3 请两名学生板 演例1 当堂训练 1 77页练习 2 在 ABC 中 C 90 BC 2 sinA 则 2 3 边 AC 的长是 A B 3 13 C D 4 35 全课小结 在直角三角形中 当锐角 A 的 度数一定时 不管三角形的大小如何 A 的对边与斜边的比都是 在Rt ABC中 C 90 我们把 锐角A的对边与斜边的比叫做 A 的 记作 斜边c 对边a b C B A 教 学 流 程 图 教学 设计 评价 课 堂 教 学 设 计 锐 角三 角函 数 2 余 弦 正切 教学 内容 分析 余弦 正切仍然是直角三角形的边角关系 学习了正弦概念 余弦 正切 的概念是容易掌握的 在此基础上得出锐角三角函数的概念 知识 与技能 1 感知当直角三角形的锐角固定时 它的邻边与斜边 对边 与邻边的比值也都固定这一事实 2 能根据余弦 正切的概念 正确进行计算 过程 与方法 逐步培养学生观察 比较 分析 概括的思维能力 教 学 目 标 情感态度 价值观 引导学生结合图形 探索数量关系 培养学习数学的兴趣 进 一步领会数形结合的思想方法 学情 分析 在第一课时的基础上 学生对锐角三角函数有了一定的认识 学习余弦 正切的概念 问题不会大 教 学 教学 重点 理解余弦 正切的概念 难点熟练运用锐角三角函数的概念进行有关计算 分 析 教学 难点 解决 办法 数形结合 理解概念 总结规律 教学 策略 仔细观察 认真比较 教学 资源 教材 教师教学用书 中学教材全解 与教材配套的练习册 板 书 设 计 锐角三角函数 2 余弦 正切 一 正弦的概念 在Rt ABC中 C 90 我们把锐角A的对边与斜边的比叫做 A的正弦 记作sinA 即sinA Aa Ac 的对边 的斜边 二 余弦 正切 在 Rt ABC 中 C 90 我们把 A 的邻边与斜边的比叫做 A 的余弦 记 作 cosA 即 cosA A 对对对 对对 a c 把 A 的对边与邻边的比叫做 A 的正切 记作 tanA 即 tanA A A 对对对 对对对 a b 三 锐角三角函数 我们把锐角 A 的正弦 余弦 正切都叫做 A 的锐角三角函数 对于锐角 A 的每一个确定的值 sinA 有唯一确定的值与它对应 所以 sinA 是 A 的函数 同样地 cosA tanA 也是 A 的函数 四 计算 教学环节教师活动学生活动 教学媒体使用 预期效果 导入新课 1 我们是怎样定义直角三角形 中一个锐角的正弦的 2 在 Rt ABC 中 C 90 当锐角 A 确定时 A 的对边与斜边 的比是 现在我们要问 A的邻边与斜边的比呢 A的对边与邻边的比呢 讨论 回答 斜边c 对边a 邻边 b C B A 揭示学习 目标 教师口述学习目标 学生自学 教师巡视 个别指导学生阅读教材第77 至78页内容 检查自学 效果 类似于正弦的情况 教师问 学生答 如图在 Rt ABC 中 C 90 当 锐角 A 的大小确定时 A 的邻边与 斜边的比 A 的对边与邻边的比也 分别是确定的 我们 把 A 的邻边与斜边的比叫做 A 的余弦 记作 cosA 即 cosA A 对对对 对对 a c 把 A 的对边与邻边的比叫做 斜边c 对边a 邻边 b C B A A 的正切 记作 tanA 即 tanA A A 对对对 对对对 a b 例如 当 A 30 时 我们有 cosA cos30 当 A 45 时 我们有 tanA tan45 教师讲解并板书 锐角A的正 弦 余弦 正切都叫做 A的锐角三 角函数 对于锐角A的每一个确定的 值 sinA有唯一确定的值与它对应 所以sinA是A的函数 同样地 cosA tanA也是A的函数 当堂训练教材78页练习1 2 3 课堂小结 本节课的收获学生回答 相互补 充 布置作业 练习册对应的作业 课 堂 教 学 设 计 课题 锐角三角函数 3 特殊角的三角函数值 教学 内容 本节内容借助于学生熟悉的两种三角尺研究了30 45 60 角的正 弦 余弦和正切值 并以例题的形式介绍了已知锐角三角函数值求锐角的 问题 当然这时所要求出的角都是30 45 和60 这些特殊角 分析 知识 与技能 熟记30 45 60 角的三角函数值 并会由一个特殊角 的三角函数值说出这个角的度数 过程 与方法 逐步培养学生观察 比较 分析 概括的思维能力 教 学 目 标 情感态度 价值观 引导学生结合图形 探索数量关系 培养学习数学的兴 趣 进一步领会数形结合的思想方法 学情 分析 只要能够正确理解正弦 余弦 正切的概念 结合图形 写出特殊角 的三角函数 就能求出每一个特殊角的三角函数值 教学 重点 熟记30 45 60 角的三角函数值 难点由一个特殊角的三角函数值说出这个角的度数 教 学 分 析 教学 难点 解决 办法 结合图形 写出特殊角的三角函数 理解30 45 60 角的三角函数值的由来 教学 策略 讨论 交流 仔细比较 认真分析 教学 资源 教材 教师教学用书 中学教材全解 与教材配套的练习册 板 书 设 计 特殊角的三角函数值 1 什么叫做 A的锐角三角函数 2 如图 sin30 cos30 tan30 同理可以得到 3 特殊角的三角函数值可列表如下 角度 三角函数值 函数名称 30 45 60 sin 2 1 2 2 2 3 cos 2 3 2 2 2 1 tg 3 313 ctg 3 1 3 3 教学环节教师活动学生活动 教学媒体使用 预期效果 揭示学习 目标 教师口述学习目标 学生自学 教师巡视 个别指导 1 学生思考并讨论 教材第79的 探究 2 熟记30 45 60 角的三角函数值 3 学习例3和例 4 注意书写格式 检查自学 效果 1 教师提问 学生回答或板书 2 指导学生进一步探究 1 互余两角的三角函数之间的关 系 1 根据两幅三角板 的边与边的关系 写出30 45 60 角的三角函数值 2 根据表格中的三 sin 90 cos cos 90 sin 2 平方关系 sin2 cos2 1 角函数值 说出对 应的角的度数 相互提问 交流 当堂训练 教材80页得练习指名板演 全班齐 练 课堂小结 学生归纳 相互补 充 布置作业 课 堂 教 学 设 计 课题 锐角三角函数 4 运用计算器求锐角的三角函数值 知识 与技能 让学生熟识计算器一些功能键的使用 会用计算器求锐角的 三角函数值和由三角函数值来求角 过程 与方法 通过计算器的熟练应用 学习数学知识 培养数学能力 教 学 目 标 情感态度价值 观 培养学生的动手能力和学习数学的兴趣 学 情 分 析 由于学生对计算器的操作比较熟悉 所以学习本节内容不成问题 教学 重点 运用计算器处理三角函数中的值或角的问题 难点已知三角函数值来求角的度数 教 学 分 析 教学难 点 解决办 法 明确概念 不断探索 尝试 教 学 策 略 尝试和探究贯穿课堂全过程 重视引导 指导和讲解 教 学 资 源 教材 教师教学用书 中学教材全解 与教材配套的练习册 板 书 设 计 用计算器求锐角的三角函数值 1 计算 1 sin30 cos45 cos60 2 tan45 sin60 4sin30 cos45 6 tan30 2 用计算器求三角函数值 1 sin18 2 tan30 36 3 cos55 3 根据三角函数值求角的度数 1 已知sinA 0 5018 求 A的度数 2 已知cos B 0 6252 求 B的度数 4 注意计算器功能键的使用 教学环节教师活动学生活动 教学媒体使 用预期效果 导入新课 今天我们学习借助计算器求非 特殊锐角的三角函数值和由三角函 数值来求角的度数 揭示学习目 标 教师口述学习目标 指导学生自 学 注意计算器功能键的使用 学生自学教材第 80 81页的内容 学生自学 教师巡视 个别督查 检查自学效 果 指名做黑板上的试题 全班齐练 学生归纳更 正 当堂训练 教材第81页练习题 课堂小结 借助计算器求非特殊锐角的三 角函数值的注意事项是什么 学生回答 相互补充 教学 内容 分析 教科书借助于实际问题背景 设计了一个 探究 栏目 要求学生探讨 在直角三角形中 根据两个已知条件 其中至少有一个是边 求解直角三角 形 最后教科书归纳给出求解直角三角形常用的反映三边关系的勾股定理 反映锐角之间关系的互余关系 以及反映边角之间关系的锐角三角函数关系 知识 与技能 使学生理解直角三角形中五个元素的关系 会运用勾股定理 直角三角形的两个锐角互余及锐角三角函数解直角三角形 过程 与方法 通过综合运用勾股定理 直角三角形的两个锐角互余及锐角 三角函数解直角三角形 逐步培养学生分析问题 解决问题的能 力 教 学 目 标 情感态度 价值观 渗透数形结合的数学思想 培养学生良好的学习习惯 学情 分析 本节内容比较抽象 学生学习会有一定的困

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论