




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实际问题与二元一次方程组实际问题与二元一次方程组题型归纳题型归纳 知识点一 列方程组解应用题的基本思想知识点一 列方程组解应用题的基本思想 列方程组解应用题是把 未知 转化为 已知 的重要方法 它的关键是把已知量和未知量联 系起来 找出题目中的相等关系 一般来说 有几个未知数就列出几个方程 所列方程必须满足 1 方程两边表示的是同类量 2 同类量的单位要统一 3 方程两边的数值要相等 知识点知识点二二 列二元一次方程组解应用题的一般步骤 列二元一次方程组解应用题的一般步骤 利用二元一次方程组探究实际问题时 一般可分为以下六个步骤 1 审题审题 弄清题意及题目中的数量关系 2 设未知数设未知数 可直接设元 也可间接设元 3 找出题目中的等量关系找出题目中的等量关系 4 列出方程组列出方程组 根据题目中能表示全部含义的等量关系列出方程 并组成方程组 5 解所列的方程组解所列的方程组 并检验解的正确性 6 写出答案写出答案 要点诠释 要点诠释 1 解实际应用问题必须写 答 而且在写答案前要根据应用题的实际意义 检查求得 的结 果是否合理 不符合题意的解应该舍去 2 设 答 两步 都要写清单位名称 3 一般来说 设几个未知数就应该列出几个方程并组成方程组 4 列方程组解应用题应注意的问题 弄清各种题型中基本量之间的关系 审题时 注意从文字 图表中获得有关信息 注 意用方程组解应用题的过程中单位的书写 设未知数和写答案都要带单位 列 方程组与解方程组 时 不要带单位 正确书写速度单位 避免与路程单位混淆 在寻找等量关系时 应注意挖 掘隐含的条件 列方程组解应用题一定要注意检验 知识点知识点三三 列方程组解应用题中常用的基本等量关系 列方程组解应用题中常用的基本等量关系 类型一 列二元一次方程组解决类型一 列二元一次方程组解决 行程问题行程问题 1 追击问题 追击问题是行程问题中很重要的一种 它的特点是同向而行 这类问题比较直观 画线段 用图便于理解与分析 其等量关系式是 两者的行程差 开始时两者相距的路程 2 相遇问题 相遇问题也是行程问题中很重要的一种 它的特点是相向而行 这类问题也比较直 观 因而也画线段图帮助理解与分析 这类问题的等量关系是 双方所走的路程之和 总路程 3 航行问题 船在静水中的速度 水速 船的顺水速度 船在静水中的速度 水速 船的逆水速度 顺水速度 逆水速度 2 水速 注意 注意 飞机航行问题同样会出现顺风航行和逆风航行 解题方法与船顺水航行 逆水航行问题 类似 例 1 甲 乙两地相距 160 千米 一辆汽车和一辆拖拉机同时由甲 乙两地相向而行 1 小时 20 分 相遇 相遇后 拖拉机继续前进 汽车在相遇处停留 1 小时后调转车头原速返回 在汽车再次出发 半小时后追上了拖拉机 这时 汽车 拖拉机各自行驶了多少千米 思路点拨 思路点拨 画直线型示意图理解题意 1 这里有两个未知数 汽车的行程 拖拉机的行程 2 有两个等量关系 相向而行 汽车行驶小时的路程 拖拉机行驶小时的路程 160 千米 同向而行 汽车行驶小时的路程 拖拉机行驶小时的路程 解 解 设汽车的速度为每小时行千米 拖拉机的速度为每小时千米 根据题意 列方程组 解这个方程组 得 答 汽车行驶了 165 千米 拖拉机行驶了 85 千米 总结升华 总结升华 根据题意画出示意图 再根据路程 时间和速度的关系找出等量关系 是行程问题 的常用的解决策略 变式变式 1 1 甲 乙两人相距 36 千米 相向而行 如果甲比乙先走 2 小时 那么他们在乙出发 2 5 小时后相遇 如果乙比甲先走 2 小时 那么他们在甲出发 3 小时后相遇 甲 乙两人每小时各走多 少千米 变式变式 2 2 两地相距 280 千米 一艘船在其间航行 顺流用 14 小时 逆流用 20 小时 求船在 静水中的速度和水流速度 类型二 列二元一次方程组解决类型二 列二元一次方程组解决 工程问题工程问题 工程问题 工程问题 工作效率 工作时间 工作量 例 2 一家商店要进行装修 若请甲 乙两个装修组同时施工 8 天可以完成 需付两组费用 共 3520 元 若先请甲组单独做 6 天 再请乙组单独做 12 天可完成 需付两组费用共 3480 元 问 1 甲 乙两组工作一天 商店应各付多少元 2 已知甲组单独做需 12 天完成 乙组单独做需 24 天完成 单独请哪组 商店所付费用最少 思路点拨 思路点拨 本题有两层含义 各自隐含两个等式 第一层含义 若请甲 乙两个装修组同时施 工 8 天可以完成 需付两组费用共 3520 元 第二层含义 若先请甲组单独做 6 天 再请乙组单 独做 12 天可完成 需付两组费用共 3480 元 设甲组单独做一天商店应付 x 元 乙组单独做一天商 店应付 y 元 由第一层含义可得方程 8 x y 3520 由第二层含义可得方程 6x 12y 3480 解解 1 设甲组单独做一天商店应付 x 元 乙组单独做一天商店应付 y 元 依题意得 解得 答 甲组单独做一天商店应付 300 元 乙组单独做一天商店应付 140 元 2 单独请甲组做 需付款 300 12 3600 元 单独请乙组做 需付款 24 140 3360 元 故请乙组单独做费用最少 答 请乙组单独做费用最少 总结升华 总结升华 工作效率是单位时间里完成的工作量 同一题目中时间单位必须统一 一般地 将 工作总量设为 1 也可设为 a 需根据题目的特点合理选用 工程问题也经常利用线段图或列表法 进行分析 变式变式 小明家准备装修一套新住房 若甲 乙两个装饰公司合作 6 周完成需工钱 5 2 万元 若甲公司单独做 4 周后 剩下的由乙公司来做 还需 9 周完成 需工钱 4 8 万元 若只选一个公司 单独完成 从节约开支的角度考虑 小明家应选甲公司还是乙公司 请你说明理由 类型三 列二元一次方程组解决类型三 列二元一次方程组解决 商品销售利润问题商品销售利润问题 1 利润 售价 成本 进价 2 3 利润 成本 进价 利 润率 定价 成本 进价 1 利润率 5 实际售价 标价 打折率 注意 注意 商品利润 售价 成本 中的右边为正时 是盈利 为负时 就是亏损 打几折就是 按标价的十分之几或百分之几十销售 例如八折就是按标价的十分之八即五分之四或者百分之八 十 例 3 有甲 乙两件商品 甲商品的利润率为 5 乙商品的利润率为 4 共可获利 46 元 价格调整 后 甲商品的利润率为 4 乙商品的利润率为 5 共可获利 44 元 则两件商品的进价分别是多少 元 思路点拨思路点拨 做此题的关键要知道 利润 进价 利润率 解 甲商品的进价为 x 元 乙商品的进价为 y 元 由题意得 解得 答 两件商品的进价分别为 600 元和 400 元 变式变式 1 1 2011 湖南衡阳 李大叔去年承包了 10 亩地种植甲 乙两种蔬菜 共获利 18000 元 其中甲种蔬菜每亩获利 2000 元 乙种蔬菜每亩获利 1500 元 李大叔去年甲 乙两种蔬菜各种植了 多少亩 变式变式 2 2 某商场用 36 万元购进 A B 两种商品 销售完后共获利 6 万元 其进价和售价如下表 AB 进价 元 件 12001000 售价 元 件 13801200 4 注 获利 售价 进价 求该商场购进 A B 两种商品各多少件 类型四 列二元一次方程组解决类型四 列二元一次方程组解决 银行储蓄问题银行储蓄问题 1 基本概念 本金 顾客存入银行的钱叫做本金 利息 银行付给顾客的酬金叫做利息 本息和 本金与利息的和叫做本息和 期数 存入银行的时间叫做期数 利率 每个期数内的利息与本金的比叫做利率 利息税 利息的税款叫做利息税 2 基本关系式 利息 本金 利率 期数 本息和 本金 利息 本金 本金 利率 期数 本金 1 利率 期数 利息税 利息 利息税率 本金 利率 期数 利息税率 税后利息 利息 1 利息税率 年利率 月利率 12 注意 注意 免税利息 利息 例 4 小明的妈妈为了准备小明一年后上高中的费用 现在以两种方式在银行共存了 2000 元钱 一种是年利率为 2 25 的教育储蓄 另一种是年利率为 2 25 的一年定期存款 一年后可取出 2042 75 元 问这两种储蓄各存了多少钱 利息所得税 利息金额 20 教育储蓄没有利息所 得税 思路点拨 思路点拨 设教育储蓄存了 x 元 一年定期存了 y 元 我们可以根据题意可列出表格 解 设存一年教育储蓄的钱为 x 元 存一年定期存款的钱为 y 元 则列方程 解得 答 存教育储蓄的钱为 1500 元 存一年定期的钱为 500 元 总结升华总结升华 我们在解一些涉及到行程 收入 支出 增长率等的实际问题时 有时候不容易找 出其等量关系 这时候我们可以借助图表法分析具体问题中蕴涵的数量关系 题目中的相等关系随 之浮现出来 变式变式 1 1 李明以两种形式分别储蓄了 2000 元和 1000 元 一年后全部取出 扣除利息所得税 可得利息 43 92 元 已知两种储蓄年利率的和为 3 24 问这两种储蓄的年利率各是百分之几 注 公民应缴利息所得税 利息金额 20 变式变式 2 2 小敏的爸爸为了给她筹备上高中的费用 在银行同时用两种方式共存了 4000 元钱 第一种 一年期整存整取 共反复存了 3 次 每次存款数都相同 这种存款银行利率为年息 2 25 第二种 三年期整存整取 这种存款银行年利率为 2 70 三年后同时取出共得利息 303 75 元 不计利息税 问小敏的爸爸两种存款各存入了多少元 类型五 列二元一次方程组解决类型五 列二元一次方程组解决 生产中的配套问题生产中的配套问题 解这类问题的基本等量关系是 总量各部分之间的比例 每一套各部分之间的比例 例 5 某服装厂生产一批某种款式的秋装 已知每 2 米的某种布料可做上衣的衣身 3 个或衣袖 5 只 现计划用 132 米这种布料生产这批秋装 不考虑布料的损耗 应分别用多少布料才能使做的 衣身和衣袖恰好配套 思路点拨 思路点拨 本题的第一个相等关系比较容易得出 衣身 衣袖所用布料的和为 132 米 第二个 相等关系的得出要弄清一整件衣服是怎么样配套的 即衣袖的数量等于衣身的数量的 2 倍 注意 别把 2 倍的关系写反了 解 解 设用米布料做衣身 用米布料做衣袖才能使衣身和衣袖恰好配套 根据题意 得 答 用 60 米布料做衣身 用 72 米布料做衣袖才能使做的衣身和衣袖恰好配套 总结升华 总结升华 生产中的配套问题很多 如螺钉和螺母的配套 盒身与盒底的配套 桌面与桌腿的 配套 衣身与衣袖的配套等 各种配套都有数量比例 依次设未知数 用未知数可把它们之间的数 量关系表示出来 从而得到方程组 使问题得以解决 确定等量关系是解题的关键 变式变式 1 1 现有 190 张铁皮做盒子 每张铁皮做 8 个盒身或 22 个盒底 一个盒身与两个盒底配 成一个完整盒子 问用多少张铁皮制盒身 多少张铁皮制盒底 可以正好制成一批完整的盒子 变式变式 2 2 某工厂有工人 60 人 生产某种由一个螺栓套两个螺母的配套产品 每人每天生产螺 栓 14 个或螺母 20 个 应分配多少人生产螺栓 多少人生产螺母 才能使生产出的螺栓和螺母刚好 配套 变式变式 3 3 一张方桌由 1 个桌面 4 条桌腿组成 如果 1 立方米木料可以做桌面 50 个 或做桌 腿 300 条 现有 5 立方米的木料 那么用多少立方米木料做桌面 用多少立方米木料做桌腿 做出 的桌面和桌腿 恰好配成方桌 能配多少张方桌 类型六 列二元一次方程组解决类型六 列二元一次方程组解决 增长率问题增长率问题 解这类问题的基本等量关系式是 原量 1 增长率 增长后的量 原量 1 减少率 减少后的量 例 6 某工厂去年的利润 总产值 总支出 为 200 万元 今年总产值比去年增加了 20 总 支出比去年减少了 10 今年的利润为 780 万元 去年的总产值 总支出各是多少万元 思路点拨思路点拨 设去年的总产值为 x 万元 总支出为 y 万元 则有 总产值 万元 总支出 万元 利润 万元 去年 xy200 今年 120 x90 y780 根据题意知道去年的利润和今年的利润 由利润 总产值 总支出和表格里的已知量和未知量 可 以列出两个等式 解 解 设去年的总产值为 x 万元 总支出为 y 万元 根据题意得 解之得 答 去年的总产值为 2000 万元 总支出为 1800 万元 总结升华 总结升华 当题的条件较多时 可以借助图表或图形进行分析 变式变式 1 1 若条件不变 求今年的总产值 总支出各是多少万元 变式变式 2 2 某城市现有人口 42 万 估计一年后城镇人口增加 0 8 农村人口增加 1 1 这样全 市人口增加 1 求这个城市的城镇人口与农村人口 类型七 列二元一次方程组解决类型七 列二元一次方程组解决 和差倍分问题和差倍分问题 解这类问题的基本等量关系是 较大量 较小量 多余量 总量 倍数 倍量 例 7 爱心 帐篷厂和 温暖 帐篷厂原计划每周生产帐篷共 9 千顶 现某地震灾区急需帐 篷 14 千顶 两厂决定在一周内赶制出这批帐篷 为此 全体职工加班加点 爱心 帐篷厂和 温暖 帐篷厂一周内制作的帐篷数分别达到了原来的 1 6 倍 1 5 倍 恰好按时完成了这项任 务 求在赶制帐篷的一周内 爱心 帐篷厂和 温暖 帐篷厂各生产帐篷多少千顶 思路点拨 思路点拨 找出已知量和未知量 根据题意知未知量有两个 所以列两个方程 根据计划前后 倍 数关系由已知量和未知量列出两个等式 即是两个方程组成的方程组 解 设原计划 爱心 帐篷厂生产帐篷 x 千顶 温暖 帐篷厂生产帐篷 y 千顶 由题意得 解得 所以 1 6x 1 65 8 1 5y 1 54 6 答 爱心 帐篷厂生产帐篷 8 千顶 温暖 帐篷厂生产帐篷 6 千顶 变式变式 1 1 地球一小时 是世界自然基金会在 2007 年提出的一项倡议 号召个人 社区 企业和政府在每年 3 月最后一个星期六 20 时 30 分 21 时 30 分熄灯一小时 旨在通过一个人人可 为的活动 让全球民众共同携手关注气候变化 倡导低碳生活 中国内地去年和今年共有 119 个城 市参加了此项活动 且今年参加活动的城市个数比去年的 3 倍少 13 个 问中国内地去年 今年分 别有多少个城市参加了此项活动 变式变式 2 2 游泳池中有一群小朋友 男孩戴蓝色游泳帽 女孩戴红色游泳帽 如果每位男孩看 到蓝色与红色的游泳帽一样多 而每位女孩看到蓝色的游泳帽比红色的多 1 倍 你知道男孩与女孩 各有多少人吗 类型八 列二元一次方程组解决类型八 列二元一次方程组解决 数字问题数字问题 解决这类问题 首先要正确掌握自然数 奇数 偶数等有关概念 特征及其表示 如当 n 为整 数时 奇数可表示为 2n 1 或 2n 1 偶数可表示为 2n 等 有关两位数的基本等量关系式为 两位数 十位数字10 个位数字 例 8 两个两位数的和是 68 在较大的两位数的右边接着写较小的两位数 得到一个四位数 在较大的两位数的左边写上较小的两位数 也得到一个四位数 已知前一个四位数比后一个四位数 大 2178 求这两个两位数 思路点拨思路点拨 设较大的两位数为 x 较小的两位数为 y 问题 1 在较大的两位数的右边写上较小的两位数 所写的数可表示为 100 x y 问题 2 在较大数的左边写上较小的数 所写的数可表示为 100y x 解 设较大的两位数为 x 较小的两位数为 y 依题意可得 解得 答 这两个两位数分别为 45 23 变式变式 1 1 一个两位数 减去它的各位数字之和的 3 倍 结果是 23 这个两位数除以它的各位 数字之和 商是 5 余数是 1 这个两位数是多少 变式变式 2 2 一个两位数 十位上的数字比个位上的数字大 5 如果把十位上的数字与个位上的数 字交换位置 那么得到的新两位数比原来的两位数的一半还少 9 求这个两位数 变式变式 3 3 某三位数 中间数字为 0 其余两个数位上数字之和是 9 如果百位数字减 1 个位 数字加 1 则所得新三位数正好是原三位数各位数字的倒序排列 求原三位数 类型九 列二元一次方程组解决类型九 列二元一次方程组解决 浓度问题浓度问题 浓度问题 浓度问题 溶液质量 浓度 溶质质量 例 9 现有两种酒精溶液 甲种酒精溶液的酒精与水的比是 3 7 乙种酒精溶液的酒精与水的 比是 4 1 今要得到酒精与水的比为 3 2 的酒精溶液 50kg 问甲 乙两种酒精溶液应各取多少 思路点拨 思路点拨 本题欲求两个未知量 可直接设出两个未知数 然后列出二元一次方程组解决 题 中有以下几个相等关系 1 甲种酒精溶液与乙种酒精溶液的质量之和 50 2 混合前两种溶 液所含纯酒精质量之和 混合后的溶液所含纯酒精的质量 3 混合前两种溶液所含水的质量之 和 混合后溶液所含水的质量 4 混合前两种溶液所含纯酒精之和与水之和的比 混合后溶液 所含纯酒精与水的比 解 法一 设甲 乙两种酒精溶液分别取 x kg y kg 依题意得 答 甲取 20kg 乙取 30kg 法二 设甲 乙两种酒精溶液分别取 10 x kg 和 5y kg 则甲种酒精溶液含水 7x kg 乙种酒精溶液含水 y kg 根据题意得 所以 10 x 20 5y 30 答 甲取 20kg 乙取 30kg 总结升华总结升华 此题的第 1 个相等关系比较明显 关键是正确找到另外一个相等关系 解这类 问题常用的相等关系是 混合前后所含溶质相等或混合前后所含溶剂相等 用它们来联系各量之间 的关系 列方程组时就显得容易多了 列方程组解应用题 首先要设未知数 多数题目可以直接设 未知数 但并不是千篇一律的 问什么就设什么 有时候需要设间接未知数 有时候需要设辅助未 知数 举一反三 举一反三 变式变式 要配浓度是 45 的盐水 12 千克 现有 10 的盐水与 85 的盐水 这两种盐水各需多少 类型十 列二元一次方程组解决类型十 列二元一次方程组解决 几何问题几何问题 几何问题 几何问题 解决这类问题的基本关系式有关几何图形的性质 周长 面积 体积等计算公式 例 10 如图 用 8 块相同的长方形地砖拼成一个长方形 每块长方形地砖的长和宽分别是多 少 思路点拨思路点拨 初看这道题目中没有提供任何相等关系 但是题目提供的图形隐含着矩形两条宽相 等 两条长相等 我们设每个小长方形的长为 x 宽为 y 就可以列出关于 x y 的二元一次方程组 解解 设长方形地砖的长 xcm 宽 ycm 由题意得 答 每块长方形地砖的长为 45cm 宽为 15cm 总结升华 总结升华 几何应用题的相等关系一般隐藏在某些图形的性质中 解答这类问题时应注意认真 分析图形特点 找出图形的位置关系和数量关系 再列出方程求解 举一反三 举一反三 变式变式 1 1 用长 48 厘米的铁丝弯成一个矩形 若将此矩形的长边剪掉 3 厘米 补到较短边上 去 则得到一个正方形 求正方形的面积比矩形面积大多少 变式变式 2 2 一块矩形草坪的长比宽的 2 倍多 10m 它的周长是 132m 则长和宽分别为多少 类型十一 列二元一次方程组解决类型十一 列二元一次方程组解决 年龄问题年龄问题 年龄问题 年龄问题 解决这类问题的关键是抓住两人年龄的增长数是相等 两人的年龄差是永远不会变的 例 11 今年父亲的年龄是儿子的 5 倍 6 年后父亲的年龄是儿子的 3 倍 求现在父亲和儿子的 年龄各是多少 思路点拨 思路点拨 解本题的关键是理解 6 年后 这几个字的含义 即 6 年后父子俩都长了 6 岁 今 年父亲的年龄是儿子的 5 倍 6 年后父亲的年龄是儿子的 3 倍 根据这两个相等关系列方程 解 设现在父亲 x 岁 儿子 y 岁 根据题意得 答 父亲现在 30 岁 儿子 6 岁 总结升华 总结升华 解决年龄问题 要注意一点 一个人的年龄变化 增大 减小 了 其他人也一样 增大或减小 并且增大 或减小 的岁数是相同的 相同的时间内 变式变式 今年 小李的年龄是他爷爷的五分之一 小李发现 12 年之后 他的年龄变成爷爷的 三分之一 试求出今年小李的年龄 类型十二 列二元一次方程组解决类型十二 列二元一次方程组解决 优化方案问题 优化方案问题 优化方案问题 优化方案问题 在解决问题时 常常需合理安排 需要从几种方案中 选择最佳方案 如网络的 使用 到不同旅行社购票等 一般都要运用方程解答 得出最佳方案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务付款管理办法化工
- 资产损失税前管理办法
- 视频监控项目管理办法
- 专人服务酒店管理办法
- 交通违章考核管理办法
- 规范售卖摊位管理办法
- 业务代理机构管理办法
- QC主管现场管理办法
- 中国国土管理暂行办法
- 质量要求与管理办法
- 英语初高中衔接音标
- 第十四章滚动轴承相关设计
- 第1章 数据与统计学-统计学
- GB/T 2059-2000铜及铜合金带材
- GB/T 14456.1-2017绿茶第1部分:基本要求
- 远离电子烟主题班会课件
- 设备维护保养手册
- ZYHZYHC系列自控远红外电焊条烘干炉使用说明书
- 外科学课件:泌尿、男生殖系统外科检查
- 高中政治统编版(2022)必修3(教案)我国法治建设历程(完整文档)
- 市场营销策划(第五版)第08章 促销策划
评论
0/150
提交评论