




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.习题课教学基本要求 高等数学习题课是高等数学教学中的一个重要实践性环节,它是理论教学内容的深入和提高。通过习题课的教学及解题过程的训练,促进学生运算技能,逻辑推理能力,运用所学知识分析、解决问题能力的进一步提高,消化和巩固所学的理论知识,检查学生对所学内容的掌握程度,使学生明确教学基本要求,发现自己学习中的薄弱环节,发挥教与学,导与练,学与用的桥梁作用。 教学中,对基本概念要澄清学生对概念的模糊认识,明确基本概念的要点;对基本方法要条理化,明确计算方法中应注意的问题;对基本理论要把握其内在特征,明确其应用范畴;对解题思路与解题方法进行概括,总结出其规律性。 习题课内容选题上要注意:习题的选取要精,要注意服从习题课教学要求,配合讲课内容,消化所学理论。要从学生实际出发,有的放矢,把握深广度,注意各种层次习题的恰当搭配。要使习题课内容与课内外练习相互衔接,发挥理论教学与课外作业的承前启后的作用。习题课指导上要注意:解题过程的指导要到位,教师对每一个题的训练内容、训练目的、主要难点、常犯的错误等要做到心中有数,对学生指导要有针对性,使学生每解一道题都能有所收获,使习题课效能得到充分的发挥。 习题课一 极限与连续 教学内容 极限概念,无穷小概念与性质,极限的计算方法(四则运算,无穷小性质,重要极限,等价代换)。连续概念,间断点的分类,连续函数的运算与初等函数的连续性,闭区间上连续函数性质。 目的要求 1. 理解函数极限概念,会利用单侧极限确定分段函数在分段点处的极限。2. 理解无穷小概念及性质,掌握极限与无穷小的关系,会利用无穷小性质求极限。3. 掌握极限的四则运算法则,注意运算法则的条件。 4. 熟悉两个重要极限,会用两个重要极限求极限。 5. 会用等价无穷小代换求极限,熟悉常见等价代换关系。 6. 会利用初等函数连续性及复合函数连续性求极限。 7. 理解函数在一点连续和在一个区间上连续的概念,会求函数的间断点,并会判断间断点的类型。8. 了解闭区间上连续函数的性质,明确其条件及结论。 讲练重点 极限与无穷小概念,极限的计算方法,连续概念,间断点分类。 讲与练建议1. 进一步加深学生对极限概念、无穷小概念及极限思想方法的理解,使学生明确无穷小与极限的关系,无穷小性质在求极限时的应用。2. 通过典型例题讲解与练习,引导学生归纳求极限的一般方法和规律,使学生明确各类方法使用的条件、注意事项、解决问题的类型和过程,提高求解极限问题的综合能力。 3. 讲练中加深学生对连续概念的三个要素认识,使学生明确连续概念两种等价定义的形式和特点,通过对连续性与间断点的分类讨论,把握连续与间断的概念。4. 通过练习指导学生会利用初等函数的连续性求复合函数与初等函数的极限。 习题课二 导数与微分 教学内容 导数与微分概念,函数和、差、积、商的求导法则,复合函数求导法则,隐函数的导数,由参数方程所确定函数的导数,微分在近似计算中的应用。 目的要求 1. 理解导数的定义,能按照导数的定义求导数,了解导数的几何意义及可导与连续的关系。 2. 掌握函数的和、差、积、商及复合函数求导法则。 3. 掌握隐函数、参数方程所确定的函数的求导法。 4. 理解微分概念,了解微分在近似计算中的应用。 讲练重点 导数与微分概念,和、差、积、商求导法则,复合函数求导法则,隐函数求导法。 讲与练建议 1. 引导学生熟悉导数定义的等价表达式,明确分段函数在分段点处的可导性应该利用导数定义来判别,通过可导与连续关系的讨论加深学生对导数概念的理解。 2. 以复合函数求导法为重点,强化求导方法的训练,练习中要引导学生归纳求导数的一般方法和规律性,使学生能够根据不同类型函数选择恰当的公式求导,提高学生微分运算能力。 习题课三 中值定理与导数应用 教学内容 中值定理,洛必达法则,函数的单调性,函数的极值与最值,函数图形的凹凸性与拐点,函数图形的描绘。 目的要求 1. 了解中值定理的条件、结论、几何特征及其之间的关系。 2. 会用洛必达法则求未定式的极限,明确洛必达法则使用的条件及注意事项。 3. 理解函数单调性与导数正负号的关系,掌握单调性的判别方法,会利用单调性证明不等式。 4. 掌握极值概念及其求法,明确极值与最值的区别,会求简单实际问题的最值。 5. 了解函数图形凹凸性与拐点概念,会判别图形的凹向与拐点,会利用函数的单调性与极值、曲线的凹向与拐点、渐近线作函数图形。 讲练重点 拉格朗日中值定理,洛必达法则,函数的单调性与极值,最大、最小值应用问题。 讲与练建议 1. 使学生清楚中值定理的条件与结论,明确拉格朗日中值定理的作用和应用。 2. 练习中要引导学生明确洛必达法则解决问题的类型过程及使用的条件和应注意的技巧。 3. 把握导数符号与单调性的关系,使学生明确极限概念,求极值的方法,两个极值判别法的特点。 4. 练习中要配备最值建模问题,加强学生对于解决最值实际问题能力的培养。 习题课四 不定积分与定积分 教学内容 不定积分的概念与性质,不定积分换元法、分部积分法,简单有理函数积分。 定积分的概念与性质,微积分基本公式,定积分的换元法和分部积分法,广义积分。 目的要求 1. 掌握原函数与不定积分概念,明确不定积分与导数关系,掌握不定积分性质与基本公式。 2. 掌握不定积分换元积分法与分部积分法,明确三种积分方法解决问题的特征及过程。 3. 了解简单有理式的积分。 4. 掌握定积分的概念,几何意义及思想方法,了解定积分的性质。 5. 掌握微积分基本公式,会求变上限函数导数。 6. 掌握定积分换元法与分部积分法,会求两类广义积分。 讲练重点 不定积分与定积分概念,不定积分与定积分的换元法与分部积分法,微积分基本公式。 讲与练建议 1. 通过练习引导学生对不定积分概念、不定积分与导数关系的理解,明确两种换元法与分部积分法解决问题的类型特征及求解过程。加强对解题方法、题型的总结与归纳,提高学生不定积分的运算能力。 2. 进一步阐明定积分的思想方法,求解问题的特征,使学生把握定积分思想方法的实质和意义。 3. 引导学生明确牛顿莱布尼茨公式在微积分学中的地位和作用,正确的使用公式求定积分。 4. 对比不定积分积分法归纳定积分相应方法的规律性,强调广义积分的基本特征是定积分的极限。 习题课五 常微分方程 教学内容 微分方程的基本概念,可分离变量的微分方程,一阶线性微分方程,可降阶高阶微分方程,二阶常系数线性微分方程,微分方程在数学建模中的应用。 目的要求 1. 理解微分方程的基本概念。 2. 掌握可分离变量微分方程,一阶线性微分方程的解法,会解可降阶的高阶微分方程。 3. 掌握二阶常系数线性齐次方程解法,会求简单自由项的二阶常系数线性非齐次微分方程。 4. 会建立简单的微分方程数学模型。 讲练重点 微分方程基本概念,可分离变量微分方程与一阶线性微分方程的解法,二阶常系数线性微分方程解法。 讲与练建议 1. 练习中抓住方程的类型对各类方程的特征进行归纳,使学生明确各类方程标准形式及对应的解法,提高学生求解微分方程的能力。 2. 微分方程数学模型是高等数学建模的重点,练习中应通过对多领域实例分析与练习,培养学生的数学建模能力。 习题课六 向量与空间解析几何 教学内容 向量概念、向量的线性运算、向量的坐标表示及运算,向量的点积与叉积。平面及其方程,直线及其方程。柱面、旋转曲面、二次曲面、曲线及其在坐标面投影。 目的要求 1. 理解向量的概念,了解向量、向量模和方向余弦的坐标表示式,掌握用坐标表达式进行向量的运算(线性运算、点积与叉积)。 2. 掌握平面的点法式、一般式方程;掌握直线的点向式、参数式、一般式方程;了解平面与直线间的位置关系。 3. 了解曲面方程概念,了解柱面、旋转曲面、常见的二次曲面的方程及图形。 4. 会求空间曲线在坐标面上的投影曲线方程,能想像出由几个曲面围成的立体图形,并能求出立体在坐标面上的投影区域。 讲练重点 向量的数量积与向量积、平面的点法式方程,直线的点向式方程。 讲与练建议 1. 练习中以向量的坐标表示、线性运算、点积及叉积为重点,使学生掌握向量的基本运算。 2. 引导学生归纳求平面方程与直线方程的一般规律性,使学生能借助向量工具,通过平面的法向量,直线的方向向量掌握平面与直线方程的确定方法。 习题课七 多元函数微分学 教学内容 多元函数、偏导数、全微分概念。复合函数求导法则,隐函数求导法,偏导数几何应用。多元函数极值与最值,条件极值。 目的要求 1. 理解多元函数概念,了解二元函数极限及连续概念。 2. 理解偏导数与全微分的概念,了解连续偏导数与全微分之间的关系。 3. 掌握偏导数求法,多元复合函数求导法则,隐函数求导公式。 4. 会求曲面的切平面及法线,空间曲线的切线与法平面。 5. 理解二元函数极值概念,会求二元函数的极值及简单实际问题的最值,会用拉格朗日乘数法求条件极值。 讲练重点 多元函数、偏导数、全微分概念,多元复合函数求导法则,二元函数的极值与最值。 讲与练建议 1. 要强调二元函数极限趋近方式的多样性是构成二元函数连续、偏导数、全微分与相应一元函数相关概念区别的根源,加深学生对这些概念的理解。 2. 练习中要加强对复合函数求导法则的分析与练习,引导学生归纳多元函数微分法的规律性。 3. 通过典型练习题的分析使学生明确多元函数微分法在几何与最值方面的应用,通过对典型最值模型问题的分析与练习,使学生掌握求解最值应用问题的方法,促进学生数学建模能力的提高。 习题课八 多元函数积分学 教学内容 二重积分的概念与性质,二重积分在直角坐标与极坐标系中的计算,二重积分的应用。 *三重积分的概念,三重积分在直角坐标、柱坐标、球坐标系中的计算。 *对坐标的曲线积分的概念与性质,对坐标的曲线积分的计算,格林公式,曲线积分与路径无关条件。 *对坐标的曲面积分概念,对坐标的曲面积分的计算,高斯公式。 目的要求 1. 理解二重积分概念,掌握二重积分在直角坐标系与极坐标系中的计算方法,会用二重积分计算一些几何量(体积、表面积)和一些简单物理量(质量、质心等)。 2. *理解三重积分的概念,掌握三重积分在直角坐标系、柱坐标系与球坐标系中的计算。 3. *理解对坐标的曲线积分的概念,掌握对坐标的曲线积分的计算,格林公式及曲线积分与路径无关条件。 4. *了解对坐标的曲面积分的概念,会求对坐标的曲面积分,会用高斯公式。 讲练重点 二重积分概念,*对坐标的曲线积分概念,二重积分的计算,*格林公式。 讲与练建议 1. 使学生明确多元积分学是定积分的推广和发展,计算上均是转化为定积分。 2. 通过练习使学生明确二重积分计算的基本问题为确定积分次序和积分限,总结归纳二重积分计算中坐标系与积分次序选择规律。 3. 引导学生明确计算曲线积分的各种方法及条件,归纳出曲线积分计算中各种方法特点。 说明:如果教学内容包括二重积分,三重积分,对坐标的曲线积分,对坐标的曲面积分,习题课安排两次。如果教学内容包括二重积分与三重积分或二重积分与对坐标的曲线积分,习题课安排一次。 习题课九 级数 教学内容 数项级数概念和性质,数项级数的审敛法,幂级数,函数展开成幂级数,函数的幂级数展开应用。 目的要求 1. 了解无穷级数敛散概念及性质,会利用比较法、比值法判别正项级数敛散性,会用莱布尼茨判别法判别交错级数的收敛性,了解绝对收敛与条件收敛概念。 2. 理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025常规商品进口合同标准格式
- 热带雨林历险记读后感300字(9篇)
- 开启微观世界之旅:细胞结构与功能学习教案
- 化工厂安全培训评语课件
- 安全生产检查标准与风险点辨识
- 厨具材料知识培训方案课件
- 2025年煤层气供气合同正式版
- 奔驰服务顾问培训课件
- 厦门医保相关课件
- 化工制图课件
- 2025年合伙项目新增合伙人协议书
- 部编版小学道德与法治二年级上册同步表格式教案(全册)
- 养殖厂生物安全管理制度
- 上海市2024-2025学年八年级上册期末模语文卷(2)原卷版
- 交互式游戏设计趋势-深度研究
- 2025年中国海洋功能性食品行业全景评估及投资规划建议报告
- 2025-2030年中国铷行业市场规模分析及投资前景研究报告
- 《中国英语教育史》教学大纲
- 临床医学《门静脉高压症》教学课件
- 2022-2023学年仁爱版英语九年级上册单词、词组、句子背默
- 中医治疗烫伤的预防及处理
评论
0/150
提交评论