广东省东莞市2008年高中数学竞赛决赛试题新人教A版_第1页
广东省东莞市2008年高中数学竞赛决赛试题新人教A版_第2页
广东省东莞市2008年高中数学竞赛决赛试题新人教A版_第3页
广东省东莞市2008年高中数学竞赛决赛试题新人教A版_第4页
广东省东莞市2008年高中数学竞赛决赛试题新人教A版_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 20082008 年东莞市高中数学竞赛决赛试题年东莞市高中数学竞赛决赛试题 一 选择题 本大题共 6 小题 每小题 6 分 共 36 分 每小题各有四个选择支 仅有一个 选择支正确 请把正确选择支号填在答题表的相应位置 1 若集合 cbaM 中的元素是ABC 的三边长 则ABC 一定不是 A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形 2 设k 100cos 则 80tan A k k 2 1 B k k 2 1 C k k 2 1 D 2 1k k 3 如图 一个空间几何体的正视图 左视图 俯视图均为全等的等腰直角三角形 如果直 角三角形的直角边长都为 1 那么这个几何体的体积为 A 6 1 B 3 1 C 2 1 D 1 4 若A B两点分别在圆04484048166 2222 yxyxyxyx和上运 动 则 AB的最大值为 A 13 B 19 C 32 D 38 5 设 21 x x是函数 2008xf x 定义域内的两个变量 且 21 xx 若 2 1 21 xxa 那 么 下列不等式恒成立的是 A 21 afxfxfaf B 2 21 afxfxf C 21 afxfxfaf D 21 afxfxfaf 6 已知函数 5 n cos Nnnf 则 43 32 21 10 2008 2 1 ffff fff A 1 B 0 C 1 D 4 二 填空题 本大题共6 小题 每小题6 分 共36 分 请把答案填在答题卡相应题的横线 正视图左视图俯视图 2 上 7 右图的发生器对于任意函数 xf Dx 可制造出一 系列的数据 其工作原理如下 若输入数据Dx 0 则发生器结束工作 若输入数据Dx 0 时 则发生 器输出 1 x 其中 01 xfx 并将 1 x反馈回输入端 现 定义 12 xxf 50 0 D 若输入1 0 x 那么 当发生器结束工作时 输出数据的总个数为 8 若点 1 1 到直线2sincos yx的距离为d 则d的最大值是 9 从 0 1 之间选出两个数 这两个数的平方和小于 0 25 的概率是 10 函数 2 1 2 yxx 1 nnx 其中n为正整数 的值域中共有 2008 个整数 则 正整数 n 11 把 1 2 3 100 这 100 个自然数任意分成 10 组 每组 10 个数 将每组中最大的 数取出来 所得 10 个数的和记为S 若S的最大值为M 最小值为N 则 NM 12 设集合 2 2 xxxA 2 xxB 其中符号 x表示不大于 x 的最大整数 则 BA 三 解答题 本大题共 6 小题 共 78 分 解答应写出文字说明 证明过程或演算步骤 13 本小题满分 12 分 已知向量 tan1 tan1 xxAB 4 sin 4 sin xxAC 1 求证 BAC 为直角 2 若 4 4 x 求ABC 的边BC的长度的取值范围 10 xx 否 结束 第 7 题图 输出 1 x 是 01 xfx Dx 0 输入 0 x 3 14 本小题满分 12 分 已知函数1 2 2 xaaxxf 若a为整数 且函数 f x在 2 1 内恰有一个零 点 求a的值 15 本小题满分 12 分 设A B是函数xy 2 log 图象上两点 其横坐标分别为a和4 a 直线 2 axl与函数xy 2 log 的图象交于点C 与直线AB交于点D 1 求点D的坐标 2 当ABC 的面积大于 1 时 求实数a的取值范围 4 16 本小题满分 14 分 如图 在正方体 1111 DCBAABCD 中 E F分别 为棱AD AB的中点 1 求证 EF 平面 11D CB 2 求证 平面 11C CAA 平面 11D CB 3 如果1 AB 一个动点从点F出发在正方体的 表面上依次经过棱 1 BB 11C B 11D C DD1 DA上的点 最终又回到点F 指 出整个路线长度的最小值并说明理由 17 本小题满分 14 分 已知以点 0 2 tRt t tC为圆心的圆与x轴交于AO 两点 与y轴交于O B 两点 其中O为坐标原点 1 求证 OAB 的面积为定值 2 设直线42 xy与圆C交于点NM 若 ONOM 求圆C的方程 A B C D A1 B1 C1 D1 E F 5 18 本小题满分 14 分 对于函数 f x 若 f xx 则称x为 f x的 不动点 若 f fxx 则称 x为 f x的 稳定点 函数的 不动点 和 稳定点 的集合分别记为A和B 即 Ax fxx Bx ffxx 1 求证 AB 2 若 2 1 fxaxaR xR 且AB 求实数a的取值范围 3 若 f x是R上的单调递增函数 0 x是函数的稳定点 问 0 x是函数的不动点吗 若是 请证明你的结论 若不是 请说明的理由 2008 年东莞市高中数学竞赛决赛 参 考 答 案 一 选择题 D B A C D C 二 填空题 7 5 8 22 9 16 10 1003 11 1505 12 3 1 三 解答题 13 1 证明 因为 4 sin tan1 4 sin tan1 xxxxACAB 2 cossincossin sincos sincos 2coscos xxxx xxxx xx 0 4 分 所以ACAB 即 90BAC 5 分 所以ABC 是直角三角形 6 分 2 解 1 4 sin 4 sin 22 xxAC 因为ABC 是直角三角形 且ACAB 所以xACABBC 2222 tan23 9 分 6 又因为 4 4 x 1tan0 2 x 所以5 3 BC 所以 BC长度的取值范围是 5 3 12 分 14 解 1 0 a时 令012 xxf得 2 1 x 所以 f x在 2 1 内没有零点 2 分 2 0 a时 由 2 2 1 f xaxax 044 2 22 aaa恒成立 知1 2 2 xaaxxf必有两个零点 5 分 若0 2 f 解得Za 6 5 若0 1 f 解得Za 2 3 所以0 1 2 ff 7 分 又因为函数 f x在 2 1 内恰有一个零点 所以 2 1 0ff 即 65 23 0aa 10 分 解得 35 26 a 由 1aZa 综上所述 所求整数a的值为1 12 分 15 解 1 易知 D 为线段 AB 的中点 因 log 2 a aA log 4 4 2 a aB 所以由中点公式得 log 2 4 2 aa aD 2 分 2 连接 AB AB 与直线2 axl交于点 D D 点的纵坐标为 4 log log 2 1 22 aayD 4 分 所以 BCDACDABC SSS 22 2 1 CD 2 CD 7 4 log log 2 1 2 log2 222 aaa log2 4 2 2 aa a 8 分 由 S ABC log2 4 2 2 aa a 1 得2220 a 10 分 因此 实数 a 的取值范围是2220 a 12 分 16 1 证明 连结BD 在正方体 1 AC中 对角线 11 BDB D 又 E F 为棱 AD AB 的中点 EFBD 11 EFB D 2 分 又 B1D1平面 11 CB D EF 平面 11 CB D EF 平面 CB1D1 4 分 2 证明 在正方体 1 AC中 AA1 平面 A1B1C1D1 而 B1D1平面 A1B1C1D1 AA1 B1D1 又 在正方形 A1B1C1D1中 A1C1 B1D1 B1D1 平面 CAA1C1 6 分 又 B1D1平面 CB1D1 平面 CAA1C1 平面 CB1D1 8 分 3 最小值为 3 2 10 分 如图 将正方体六个面展开成平面图形 12 分 从图中 F 到 F 两点之间线段最短 而且依次经过棱 BB1 B1C1 C1D1 D1D DA 上的 中点 所求的最小值为 3 2 14 分 17 解 1 OC过原点圆 2 22 4 t tOC F F 8 设圆C的方程是 2 222 4 2 t t t ytx 令0 x 得 t yy 4 0 21 令0 y 得txx2 0 21 2 分 4 2 4 2 1 2 1 t t OBOAS OAB 即 OAB 的面积为定值 4 分 2 CNCMONOM OC 垂直平分线段MN 2 1 2 ocMN kk 直线OC的方程是xy 2 1 6 分 t t2 12 解得 22 tt或 8 分 当2 t时 圆心C的坐标为 1 2 5 OC 此时C到直线42 xy的距离5 5 1 d 圆C与直线42 xy相交于两点 10 分 当2 t时 圆心C的坐标为 1 2 5 OC 此时C到直线42 xy的距离5 5 9 d 圆C与直线42 xy不相交 2 t不符合题意舍去 13 分 圆C的方程为5 1 2 22 yx 14 分 18 解 1 若A 则AB 显然成立 若A 设tA 则 f tt ff tf tt tB 故AB 4 分 2 2 1Aaxx 有实根 1 4 a 又AB 所以 2 2 11a axx 即 3422 210a xa xxa 的左边有因式 2 1axx 从而有 222 110axxa xaxa 6 分 AB 22 10a xaxa 要么没有实根 要么实根是方程 2 10axx 的根 若 9 22 10a xaxa 没有实根 则 3 4 a 若 22 10a xaxa 有实根且实根是方程 2 10axx 的根 则由方程 2 10axx 得 22 a xaxa 代入 22 10a xaxa 有210ax 由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论