



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“方程的根与函数的零点”教学设计一内容和内容解析本节内容有函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理函数零点是研究当函数的值为零时,相应的自变量的取值,反映在函数图象上,也就是函数图象与轴的交点横坐标由于函数的值为零亦即,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程有解,则函数存在零点,且方程的根就是相应函数的零点,也是函数图象与轴的交点横坐标顺理成章的,方程的求解问题,可以转化为求函数零点的问题这是函数与方程关系认识的第一步零点存在性定理,是函数在某区间上存在零点的充分不必要条件如果函数在区间a,b上的图象是一条连续不断的曲线,并且满足f(a)f(b)0,则函数在区间(a,b)内至少有一个零点,但零点的个数,需结合函数的单调性等性质进行判断定理的逆命题不成立方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还使用了“数形结合思想”及“转化与化归思想”方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法“函数与方程思想”的理论基础可见,函数零点概念在中学数学中具有核心地位本节的教学重点是,方程的根与函数零点的关系、函数零点存在性定理二目标和目标解析通过本课教学,要求学生:理解并掌握方程的根与相应函数零点的关系,在此基础上,学会将求方程的根的问题转化为求相应函数零点的问题;理解零点存在性定理,并能初步确定具体函数存在零点的区间1能够结合具体方程(如二次方程),说明方程的根、相应函数图象与轴的交点横坐标以及相应函数零点的关系;2正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点只能不止一个;3能利用函数图象和性质判断某些函数的零点个数;4能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会判断存在零点的区间(可使用计算器)三教学问题诊断分析学生已有的认知基础是,初中学习过二次函数图象和二次方程,并且解过“当函数值为0时,求相应自变量的值”的问题,初步认识到二次方程与二次函数的联系,对二次函数图象与轴是否相交,也有一些直观的认识与体会在高中阶段,已经学习了函数概念与性质,掌握了部分基本初等函数的图象与性质教学的重点是方程的根与函数零点的关系及零点存在性定理的深入理解与应用以二次方程及相应的二次函数为例,引入函数零点的概念,说明方程的根与函数零点的关系,学生并不会觉得困难学生学习的难点是准确理解零点存在性定理,并针对具体函数(或方程),能求出存在零点(或根)的区间教学过程中,通过引导学生通过探究,发现方程的根与函数零点的关系;而零点存在性定理的教学,则应引导学生观察函数图象与轴的交点的情况,来研究函数零点的情况,通过研究:函数图象不连续;,函数在区间上不单调;,函数在区间上单调,等各种情况,加深学生对零点存在性定理的理解四教学支持条件分析本节教学目标的实现,需要借助计算机或者计算器,一方面是绘制函数图象,通过观察图象加深方程的根、函数零点以及同时函数图象与轴的交点的关系;另一方面,判断零点所在区间过程中,一些函数值的计算也必须借助计算机或计算器五教学过程设计1方程的根与相应函数图象的关系复习总结一元二次方程与相应函数与轴的交点及其坐标的关系:一元二次方程根的个数图象与轴交点个数图象与轴交点坐标意图:回顾二次函数图象与轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备问题一、上述结论对其他函数成立吗?为什么?在几何画板下展示如下函数的图象:、,比较函数图象与轴的交点和相应方程的根的关系。函数的图象与轴交点,即当,该方程有几个根,的图象与轴就有几个交点,且方程的根就是交点的横坐标意图:通过各种函数,将结论推广到一般函数。2函数零点概念对于函数,把使的实数叫做函数的零点说明:函数零点不是一个点,而是具体的自变量的取值3方程的根与函数零点的关系方程有实数根函数的图象与轴有交点函数有零点以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为函数问题来求解,同样,函数问题有时也可转化为方程问题这正是函数与方程思想的基础4零点存在性定理问题二、观察图象(气温变化图)片段,根据该图象片段,将其补充成完整函数图象,并问:是否有某时刻的温度为0?为什么?(假设气温是连续变化的)意图:通过类比得出零点存在性定理给出零点存在性定理:如果函数在区间上的图象是连续不断一条曲线,并且有,那么,函数在区间内有零点.即存在,使得,这个c也就是方程的根.问题三、不是连续函数结论还成立吗?请举例说明。在几何画板下结合函数的图象说明。问题四、若,函数在区间在上一定没有零点吗?问题五、若,函数在区间在上只有一个零点吗?可能有几个?问题六、时,增加什么条件可确定函数在区间在上只有一个零点?在几何画板下结合函数的图象说明问题四、五、六。意图:通过四个问题使学生准确理解零点存在性定理5例题:求函数的零点的个数问题七、能否确定一个区间,使函数在该区间内有零点问题八、该函数有几个零点?为什么?意图:通过例题分析,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法六目标检测设计1.已知函数f (x)的图象是连续不断的,且有如下对应值表,则函数在哪几个区间内有零点?为什么?x1234610f (x)20-5.5-2618-32.函数在区间-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 名贵钟表鉴定师新员工考核试卷及答案
- 酶制剂制备工专项考核试卷及答案
- Unit 1 Teenage Life Video Time 教学设计-2024-2025学年高一英语人教版(2019)必修第一册
- 防潮密封橡胶板应用案例研究
- 建筑用定向纤维板性能研究
- 喷涂预处理工新员工考核试卷及答案
- 溶剂蒸馏工质量管控考核试卷及答案
- 建筑外围防潮处理方案设计
- 村级流动人口管理制度
- 会计中级证考试题目及答案
- 水磨钻施工安全教育培训课件
- 2025下半年新疆兵团招聘事业单位工作人员2398人考试模拟试题及答案解析
- 2025年广西林业局考试真题附答案
- 【《浅议我国中小企业行政管理面临的问题及其解决方案》8700字(论文)】
- 2024年安徽合肥市肥东县大学生乡村医生专项计划招聘真题
- 中小学教师中高级职称答辩备考试题及答案
- 2025-2026学年北京二十一中、二十二中联盟校九年级(上)开学数学试卷
- 业务员新人培训课件
- 2025年山东省青岛市中考英语试卷真题(含答案详解)
- 文学社教学课件
- 2025北京京剧院招聘工作人员10人备考题库及答案解析
评论
0/150
提交评论