高二数学上学期第二次联考试题 文.doc_第1页
高二数学上学期第二次联考试题 文.doc_第2页
高二数学上学期第二次联考试题 文.doc_第3页
高二数学上学期第二次联考试题 文.doc_第4页
高二数学上学期第二次联考试题 文.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20162017学年度第一学期高二文科数学第二次联考试卷第卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项符合题目要求。) 1直角坐标转化为极坐标是( )A B C D2抛物线y=x2的准线方程为( )A By=1 Cx=1 D3若f(x)=ex,则=( )Ae Be C2e D2e4曲线y=x3x+2上的任意一点P处切线的斜率的取值范围是( )A,+) B(,+) C(,+) D,+)5命题“若,则”的逆否命题是()A若,则 B若,则C若且,则 D若或,则6命题:“,使”,这个命题的否定是()A,使 B,使C,使 D,使7不等式成立的一个必要不充分条件是()A或B或 C或 D或8在等差数列中,“”是“数列是单调递增数列”的()A充分不必要条件B必要不充分条件 C充要条件 D既不充分又不必要条件9已知命题p:;命题q:,则下列结论中正确的是()Apq是假命题 Bpq是真命题C(p)(q)是真命题 D(p)(q)是真命题10设曲线在点(3,2)处的切线与直线垂直,则()A2 B C D211椭圆和双曲线的公共焦点为F1 、F2 , P是两曲线的一个交点,那么cosF1PF2的值是( ) A. B. C. D. 12. 过双曲线的左焦点作轴的垂线交椭圆于点,为右焦点,若,则双曲线的离心率为( ) A B C D 二、填空题(本大题共4小题,每小题5分,共20分)13函数的图象在处的切线方程为,则 14若函数,则= 15.与双曲线共渐近线且过点的双曲线方程_16.在极坐标系中,点P到直线的距离等于_。第II卷三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算过程)17. (本小题满分10分)求下列函数的导数(1) (2) 18(本小题满分12分)已知命题p:方程有两个不相等的实数根;命题q:函数是R上的单调增函数若“p或q”是真命题,“p且q”是假命题,求实数的取值范围19.(本小题满分12分)在直角坐标系中,圆的方程为()以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;()直线的参数方程是(为参数), 与交于两点,求的斜率20. (本小题满分12分)在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .(I)写出的普通方程和的直角坐标方程;(II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.21(本小题满分12分)在平面直角坐标系中,抛物线的焦点为F,点A(4,m)在抛物线上,且|AF|=5(1)求抛物线的标准方程(2)直线过点(0,1),并与抛物线交于B,C两点,满足,求出直线的方程 22. (本小题满分12分)椭圆的离心率为,短轴长为2,若直线过点且与椭圆交于,两点(1)求椭圆的标准方程;(2)是否存在面积的最大值,若存在,求出的面积;若不存在,说明理由.2016-2017学年度高二数学第一学期12月联考试卷文科数学参考答案一、选择题(本大题共12个小题,每小题5分,共60分)题号123456789101112选项CBADDBBCDDAC二、填空题(本大题共4小题,每小题5分,共20分)13 3 14 5 15 16 三、解答题(本大题共6个小题,共70分)17.解:(1),则(2)18. 解:命题p:方程x22x+m=0有两个不相等的实数根,=44m0,解得m1;命题q:函数y=(m+2)x1是R上的单调增函数,m+20,解得m2若“p或q”是真命题,“p且q”是假命题,p与q必然一真一假当p真q假时,解得m2当q真p假时,解得m1实数m的取值范围是m2或m119. 解:整理圆的方程得,由可知圆的极坐标方程为记直线的斜率为,则直线的方程为,由垂径定理及点到直线距离公式知:,即,整理得,则20. 解:21. 解:(1)点A(4,m)在抛物线上,且|AF|=5,4+=5,p=2,抛物线的标准方程为y2=4x;(2)由题可设直线l的方程为x=k(y1)(k0),代入抛物线方程得y24ky+4k=0;=16k216k0k0ork1,设B(x1,y1),C(x2,y2),则y1+y2=4k,y1y2=4k,由=0,即x1x2+y1y2=0(k2+1)y1y2k2(y1+y2)+k2=0,解得k=4或k=0(舍去),直线l存在,其方程为x+4y4=022.解.()由椭圆定义可知,=2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论