




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 1 页 目录 1 绪论 1 1 1 选题背景和研究意义 1 1 2 神经网络与模糊系统 2 1 3 文本研究内容和研究思路 2 2 模糊神经网络的基本原理 4 2 1 模糊神经网络概述 4 2 2 模糊系统和神经网络结合的可能性 5 2 2 1 人工神经网络与模糊系统的相同之处 5 2 2 2 人工神经网络与模糊系统的不同之处 6 2 2 3 人工神经网络与模糊系统结合意义 7 3 模糊神经网络模型的结构和原理 8 3 1 模糊神经网络模型构建 8 3 2 模糊神经网络学习算法 9 3 3 模糊神经网络水质评价 10 4 总结与展望 13 4 1 总结 13 4 2 展望 13 参考文献 14 致谢 15 附录 16 第 2 页 1 1 绪论绪论 1 11 1 选题背景和研究意义选题背景和研究意义 随着经济的快速发展 水资源日益恶化 水污染已呈现由点污染向面污染 发展的趋势 成为制约和困扰我国可持续发展的一大障碍 治理污染的水环境 和防止水资源被进一步恶化 已经成为当前迫切需要解决的问题 水质评价是 以定量的方式对水环境的质量进行综合的评价 是水环境管理保护和污染治理 的一项基础性工作 医务室近年来的研究热点 当前我国水污染已经得到了有关部门的重视 并且水污染治理工作中所需 的硬件设施以及科学技术的不断完善为水污染治理工作起到了重要的支撑作用 应当认识到水质分析是水污染治理工作中的基础内容 对水质进行科学的分析 能够预防水污染事件的出现 尤其是预防突发性水污染事件的发生 同时在水 污染事件发生后能够对水污染程度做出合理的判定 对水污染处理的措施以及 方案能够提供必要的依据 同时居民生活饮用水的水质也影响着人们的身体健 康 对饮用水进行必要的水质监测与分析能够确保引用水的质量 所以水质分 析不仅是水污染处理中贯彻以预防为主方针的重要途径 也是水污染处理工作 中的重要内容 传统的水质评价方法有评分法 比质法 统计法等 这些传统的水质评价 方法受人为的主观因素的制约 从而影响可评价的精度 近年来许多学者提出 了一个新的评价模型 如聚类发 经济分析法 灰色关联法 关联分析法等的 这些方法比较传统的方法 评价的精度有了较大幅度的提高 但是由于评价因 子与水质之间呈复杂的非线性关系 以及水体污染本身居于模糊性 因而影响 了评价的精度 近年来兴起的人工神经网络具有学习逼近任意非线性的能力 模糊理论是 一新的学习方法 模糊理论中的相对隶属度能很好的对水质的模糊性进行解释 能清晰地反映水质各因子的质量相对状态 从而确定水质污染影响最大的因子 水质评价方法是评价理论的核心及水污染控制系统的一个重要环节 是现 代环境科学基础理论研究的重要课题之一 然而如何才能客观地 准确地反映 水体环境质量状况 其关键在于合理的选择与建立评价方法和数学模型 水质 的清洁与污染这一对立观念之间 在划分过程中并不存在绝对分明的界限 具 有中介过渡性 这是客观存在着的模糊概念 水质评价的模糊性 是水体质量 在清洁与污染的划分过程中所呈现的亦此亦彼性 由于水质评价涉及到许多模 糊概念 如 水质污染程度 就是一个模糊概念 从而作为评价污染程度的分 级标准也是模糊的 而水质分级线也是一个模糊的界线 因而有必要用隶属度 来描述它 用模糊理论与方法 比传统评价方法更符合现象的实际 使水质评 价的理论与方法建立在比较严谨的数学逻辑基础上 第 3 页 1 21 2 神经网络与模糊系统神经网络与模糊系统 神经网络 Neural Network 简称 NN 是由众多简单的神经元连接而成的网 络 尽管每个神经元结构 功能都不复杂 但网络的整体动态行为极为复杂 可 组成高度非线性动力学系统 从而可表达许多复杂的物理系统 神经网络的研究 从上世纪 40 年代初开始 目前 在世界范围已形成了研究神经网络前所未有的热 潮 它已在控制 模式识别 图像和视频信号处理 金融证券 人工智能 军 事 计算机视觉 优化计算 自适应滤波和 A D 变换等方面获得了应用 模糊系统 Fuzzy System 简称 FS 是仿效人的模糊逻辑思维方法设计的系 统 方法本身明确地说明了系统在工作过程中允许数值量的不精确性存在 模糊 数学自 1965 年诞生至今已有 40 多年的历史 它在理论上还处于不断发展和完善 中 它是用精确的数学理论研究人类思维的模糊性 其最基本的概念是隶属度 用隶属度来描述某一对象或称为元素属于某一论域者称为集合的程度 这样既能 准确描述人类思维中的模糊性 又能被计算机理解 目前 它已广泛应用于计算 机科学 自动控制 系统工程 环保 机械 管理科学 思维科学 社会科学 等领域 1 3 文本研究内容和研究思路文本研究内容和研究思路 随着我国工农业的迅速发展和城市化进程 工业废水和生活污水排放量日 益增加 湖泊河流等开发活动加剧 加之人们一个时期以来 环保意识淡薄 全国性的湖泊河流污染及富营养化问题不断出现和发生 截止至 1997 年底 我 国各类水体 82 左右的河段受到不同程度的污染 其中大约 39 的河段污染严 重 70 以上的城市河段达不到饮水水源的标准 50 的城市地下水浑浊不清 长江 珠江等七大水系水质持续恶化 湖泊水库普遍受到污染 根据 2009 年我 国环境保护部公布的数字表明 全国地表水污染依然很严重 2007 年 在我国 七大水系 197 条河流 407 个重点监测断面中 I 类水质占 49 9 IV V 类水质占 26 5 劣 V 类水质占 23 6 其中 松花江为轻度污染 淮河 黄河为中度污染 海河 辽河为重度污染 为了应对水质的急剧变化 对水质 的分析是相当必要的 在水文 水利工作中 水质分析的定义为通过物理学 化学以及生物学方 法对水质样品的水质参数的性质 含量 形态以及危害进行定性与定量分析 水质是指水资源的质量 地球上的水资源循环包括自然循环与社会循环两种 自然循环的过程是在地球引力以及太阳辐射的作用下以不同的流动 蒸发 降 雨等形式构成 而社会循环则是指人们为了满足社会发展的需要 从自然界中 开发水资源进行利用 使用后的废水或污水又重新排放入水资源当中 社会循 环对水质造成的问题主要体现为水污染 水污染问题已经得到了我国社会以及 政府部门广泛的重视 而自然循环同样会因为水资源中混入杂质而使水资源产 生水质的变化 所以水质分析的对象不仅包括受到污染的水资源 同时包括自 然循环中的水资源 水质分析的任务在于通过对水资源的鉴定来了解水资源是 否能满足用水的需求 同时指导水处理工程的建设以及水污染控制的决策 水体污染使得城市居民的饮水安全和身体健康遭受到严重威胁 不仅加剧 了水体资源短缺的矛盾 也对我国的可持续发展战略带来了严重的负面影响 第 4 页 水体污染导致的富营养化的危害也是多方面的 它可以使水体变得腥臭难闻 降低水体透明度 影响水体中的溶解氧 向水体释放有毒物质 影响供水质量 增加供水成本 加速湖泊衰亡 因此水质分析的意义重大 可为水体污染的治 理提供科学依据 模糊神经网络最基本的概念是它的隶属度和模糊隶属度的函数 其中 隶 属度是指元素 u 属于模糊字迹 f 的隶属程度 用 f u 表示 他说一个在 0 1 之间的数 f u 越接近于 0 表示 u 属于模糊子集 f 的程度越小 越 靠近 1 表示 u 隶属于 f 的程度越大 模糊隶属度函数是用于定量计算元素隶 属度的函数 模糊隶属度函数一般包括三角函数 梯形函数和正态函数等 第 5 页 2 2 模糊神经网络的基本原理模糊神经网络的基本原理 2 12 1 模糊神经网络概述模糊神经网络概述 1965 年美国 L A Zadeh 教授著名的 模糊集合 一文的发表 标志了模 糊数学的诞生并很快发展起来 模糊数学诞生后 开始并未引起西方的普遍重 视 反而遭到不少学术权威的批评和否定 认为是对科学的精确性和严格性的 冒犯 由于东西方文化的差异 日本 中国 印度等东方国家很容易接受模糊 数学 认为这是很自然的事 1974 年 印度裔的英国学者 E H Mamdani 首先 将模糊理论用于锅炉和蒸汽机的控制 并在实验室作了成功的实验 不仅验证 了模糊理论的有效性 也开创了模糊控制这一新的领域 1984 年 国际模糊系 统联合会 International FuzzySystem Association IFSA 成立 并于 1985 年召开了首届年会 80 年代后期以来 在日本采用模糊控制技术的家电产品大 量上市 模糊技术在地铁机车 机器人 过程控制 故障诊断 声音识别 图 像处理 市场预测等领域普遍应用 掀起了一股模糊热 模糊理论在日本的成 功应用和巨大的市场前景给西方的企业界和科技界以巨大的震动 现实使他们 由怀疑观望转变为奋起直追 80 年代以来信息科学技术飞速发展 网络化 智 能化 综合化成为时代的特征 为模糊理论的发展和应用提供了更广阔的需求 模糊理论在学术界也得到普遍的认同和重视 1992 年 IEEE 召开了第一届关于 模糊系统的国际会议 FUZZ IEEE 并决定以后每年举行一次 1993 年 IEEE 创 办了专刊 IEEE Transaction on Fuzzy Systems 当前 模糊理论和应用正向 深度和广度进一步发展 且速度越来越快 研究成果大量涌现 己成为世界各 国高科技竞争的重要领域之一 模糊神经网络 Fuzzy Neural Network 简称 FNN 是近年来智能控制与智 能自动化领域的热点 美国早在 1988 年就召开了由 NASA 国家航天航空局 主 持的 神经网络与模糊系统 的国家研讨会 其后模糊神经网络的研究在美国 日本 法国 加拿大等国蓬勃开展起来 成果大量涌现 1992 年 IEEE 召开了 有关模糊神经网络的国际会议 美国南加州大学的 B Kosko 出版了该领域的 第一本专著 神经网络与模糊系统 模糊数学的创始人 Zadeh 和神经网络的权 威 Anderson 分别为该书作序 在国内外引起极大影响 通过一组神经元不同程度的兴奋表达一个抽象的概念值 由此将抽象的经 验规则转化成多层神经网络的输入一输出样本 提出模糊逻辑控制和决策诊断 系统综合神经网络模型 该模型能发展为模糊逻辑规律和寻找最优输入输出隶 属函数 由自组织和监督学习方案相结合 学习速度收敛性比普通 BP 学习算法 更快 还有许多研究人员对神经网络自适应模糊控制进行了研究和设计 当前 模糊神经网络的研究热潮方兴未艾 并已取得了很多理论和应用成果 2 22 2 模糊系统和神经网络结合的可能性模糊系统和神经网络结合的可能性 模糊神经网络使得神经网络 黑箱 问题走向透明化 即可以将许多能够 第 6 页 用规则描述的因果关系用模糊神经网络的输入输出关系实现 模糊系统的显著 特点是它能更自然而直接地表达人类习惯使用的逻辑含义 很适用于直接的或 高层的知识表达 但是 难以用它来表不时变知识和过程 而神经元网络则能通 过学习功能来实现自适应 自动获得精确的或模糊的数据表达的知识 但是 这种知识在神经元网络中是隐含表达的 难以直接看出其含义 从而不能直接 对其进行语义解释 可见两者各有优缺点 不难发现 它们的优缺点在一定意 义上是互补的 即模糊系统比较适合在设计智能系统时自顶向下的分析和设计 过程 而神经元网络则更适于在已初步设计了一个智能系统之后 自底向上地 来改进和完善系统的过程 因此 若能将两者巧妙结合就可实现优势互补 即 一个领域的固有缺点可以通过另一个领域的优点来补偿 由于模糊数学的突出 特点在于对事物的辨别与评判 因此有关模糊评判的其它方法都在水质综合评 价中得到应用 如模糊模式识别理论 模糊聚类法 模糊贴近度方法 模糊相 似选择法运用水质综合评价都取得了较好效果 模糊系统是模糊数学在自动控 制 信息处理 系统工程等领域的应用 属于系统论的范畴 而神经网络是人 工智能的一个分支 属于计算机科学 乍看起来两者相去甚远 隔行如隔山 因而对它们的结合 先从宏观上作了一下比较 2 2 12 2 1 人工神经网络与模糊系统的相同之处人工神经网络与模糊系统的相同之处 1 模糊系统试图描述和处理人的语言和思维中存在的模糊性概念 从而模 仿人的智能 神经网络则是根据人脑的生理结构和信息处理过程 来创造人上 神经网络 其目的也是模仿人的智能 模仿人的智能是它们共同的奋斗目标和 合作的基础 2 它们在处理和解决问题时 无需建立对象的精确数学模型 只需要根据 输入的采样数据去估计其要求的决策 这一种无模型的估计 3 知识的储存方式来看 模糊系统将知识存在规则集中 神经网络将知识 存在权系数中 都具有分布存储的特点 4 它们在对信息的加工处理过程中 均表现出了很强的容错能力 5 它们都可以用硬件实现 模糊芯片及 ANN 芯片最近得到迅速发展 商品 化产品日益增多 两者在民用和军用中得到了广泛的应用 今后的应用还会向 广度和深度方向发展 2 2 22 2 2 人工神经网络与模糊系统的不同之处人工神经网络与模糊系统的不同之处 1 神经网络是模拟人脑的结构以及对信息的一记忆和处理功能 擅长从输 入输出数据中学习有用的知识 模糊系统则是模拟人的思维和语言中对模糊信息 的表达和处理方式 擅长利用人的经验性知识 2 从知识的表达方式来看 模糊系统可以表达人的经验性知识 便于理解 而神经网络只能描述大量数据之间的复杂函数关系 难于理解 3 从知识的获取方式来看 模糊系统的规则靠专家提供或设计 难于自动 获取 而神经网络的权系数可由输入输出样本中学习 无须人为设置 4 从结构的物理意义来看 神经网络通过对输入样本的学习而得到其各个 权值 网络反映了中间神经元与输入神经元之间的关系 知识是分布存储的 第 7 页 因此中间神经元的物理意义是不明确的 从中间神经元到输出神经元之间的映 射又是经过学习得到的 其意义也不明确 从外部宏观上看人工神经网络是有 物理意义的 但网络内部的每个权不一定都有明确的物理意义 不同的初始权 值得到的结果是不相同的 无法用统一概念特征去描述它 模糊系统的输入和 输出用规则来映射它们之间的关系 大致是明确的 其物理意义也是清楚的 因此在映射出现偏差时 可以通过修改规则或者其它变量以得到比较好的修正 结果 将模糊系统和神经网络的特性作一比较 如表 2 1 所示 表 2 1 模糊系统和神经网络的特性比较 类别 方式 模糊系统神经网络 运算方式 处理方式 输入一输出关系 知识功能 使用规模 擅长处理 在计算智能中地位 max 一 min 由上而下 用规则表达因果 知识逻辑表达 中小规模皆有效果 非精确定性控制 相当于软件编程 集合运算 由下而上 用权重表达映射 知识学习获取 宜大规模才显智能 数据拟合映射 相当于硬件结构 第 8 页 2 2 32 2 3 人工神经网络与模糊系统结合意义人工神经网络与模糊系统结合意义 人工神经网络的学习信息包含在具有不同强度的神经元联接上 通过训练 过程可确定神经元联接的强度 使得神经网络以最小的误差描述过程特性 模 糊控制技术和神经网络技术同属于人工智能技术 各自具有对方不具有的优缺 点 具有互补性 模糊系统具备处理模糊语言信息的能力 可模拟人类智慧进 行判断和决策 但它不具备学习功能 人工神经网络恰恰相反 它具备学习功 能 但不能处理和描述模糊信息 模糊神经网络即结合了模糊逻辑与神经网络 的优点 避免了二者的缺点 既可以具有模糊逻辑的不确定信息处理能力 又 可以有神经网络的自学习能力 将二者结合起来 使模糊系统具备学习功能 使人工神经网络具备处理模糊信息功能 进行判断和决策 这正是模糊神经网 络的基本出发点 在控制领域有很广泛的应用前景 第 9 页 3 3 模糊神经网络模型的结构和原理模糊神经网络模型的结构和原理 3 13 1 模糊神经网络模型构建模糊神经网络模型构建 水质综合评价实际上属于多指标的模式识别问题 为了建立水质评价 FNN 模型 网络的学习样本采用 GB8383 2002 地表水环境质量标准 中的五类水 质标准作为要学习的标准模式 以嘉陵江的水质资料作为网络的测试样本 采 用有一个输入层 三个隐含层 一个输出层所组成的 5 层模糊神经网络 考虑 到测试样本中所选取的水质参数 也相应的选择了溶解氧 BOD5 非离子氨 石油类 挥发酚 大肠菌群 COD5 这 7 个参数作为网络的输出层的 7 个节点 输入 第二层将第一层中的个输入分量的模糊分割数均取为 2 个 计算出个水 质参数属于这 2 个变量值模糊集合的隶属度函数 故该层节点数为 7 x 2 14 个 第三层是规则层 用来计算每条规则的适用度 每个规则的节点仅与来自每一 个输入分量经模糊化后的一个隶属度节点相连 该层节点数为 27 128 第四 层是对第三层的输出进行归一化操作 该层节点数与第三层相同 第五层的反 模糊化层与第四层中的所有节点相连 该层完成中心平均反模糊化操作 将此 层的节点数取为 1 个 分别输出代表 I V 级水质的数值 因而水质评价 FNN 模 型的拓扑结构被确认为 7 14 128 128 1 型 其中 采用了两种输出方式来检 测水质评价结果的一致性 输出方式 1 用 0 1 0 3 0 5 0 7 0 9 来分别 表示 I V 类水质级别 输出方式二 输出节点的输出直接用数值 1 2 3 4 5 来分别表示 I V 类水质级别 模糊神经网络分为输入层 模糊化层 模糊规则计划层和输出层四层 如 图 3 1 所示 输入层与输入向量 XI连接 节点数与输入向量的维数相同 模糊 化层采用隶属度函数对输入值进行模糊化得到模糊隶属度值 模糊规则计算 层采用模糊连乘公式计算得到 输出层采用公式计算模糊神经网络的输出 模糊化模糊化模糊推理模糊推理清晰化清晰化 模糊规则库模糊规则库 y x 图 3 1 模糊神经网络划 推理如下 Ri If xiisA1i x2isA2i xkisAki then yi p0i p1ix pkixk 其中 Aij为模糊系统的模糊集 Pij j 1 2 k 为模糊参数 yi为根据模 糊规则得到的输出 输出部分 即 if 部分 是模糊的 输出部分 即 then 部 分 是确定的 该模糊推理表示输出为输入的线性组合 假设对于输入量 x x1 x2 xk 首先根据模糊规则计算各输入变量 Xj 的隶属度 Aij exp xj cij bij j 1 2 k i 1 2 n 式中 Cij bij分别为隶 第 10 页 属度函数的中心和宽度 k 为输入参数数 n 为模糊子集数 将各隶属度进行模糊计算 采用模糊算子为连乘算子 i A1j x1 A2j x2 Akj i 1 2 n 根据模糊计算结果计算模糊型的输出值 yi YI ni 1 i Pi0 Pi1x1 Pikxk ni 1 i 模糊神经网络虽然也是局部逼近网络 但是它是按照模糊系统模型建立的 网络中各个结点及所有参数均有明显的物理意义 因此这些参数的初值可以根 据系统的模糊或定性知识来加以确定 然后利用上述的学习算法可较快地收敛 到要求的输入输出关系 这正是模糊神经网络比以前单纯的神经网络的优点所 在 同时由于它具有神经网络的结构 因而参数的学习和调整比较容易 这又 是它比单纯的模糊系统的优点所在 3 23 2 模糊神经网络学习算法模糊神经网络学习算法 模糊神经网络的嘉陵江水质评测算法流程如图 3 2 所示 其中 模糊神经 网络构建根据训练样本维数确定模糊神经网络输入 输出节点数 模糊隶属度函 数个数 由于输入数据为 6 维 输出数据为 1 维 所以模糊神经网络结构为 6 12 1 即有 12 个隶属度函数 选择 7 组系数 P0 P6 模糊隶属度函数中心和宽 度 c 和 b 随机得到 模糊神经网络 的初始化 模糊神经网络 的初始化 模糊神经网络 训练 模糊神经网络 训练 训练结束训练结束系统建模系统建模 构建合适的模 糊神经网络 构建合适的模 糊神经网络 模糊神经网络 预测 模糊神经网络 预测 测试数据测试数据 模糊神经网络预测 模糊神经网络构建 模糊神经网络训练 图 3 2 模糊神经网络水质评价算法流程 模糊神经网络分为输入层 模糊化层 模糊规则计划层和输出层四层 输 入层与输入向量 XI 连接 节点数与输入向量的维数相同 模糊化层采用隶属度 函数对输入值进行模糊化得到模糊隶属度值 模糊规则计算层采用模糊连乘 公式计算得到 输出层采用公式计算模糊神经网络的输出 3 33 3 模糊神经网络水质评价模糊神经网络水质评价 神经网络是按照模糊系统原理建立的 网络中各个节点及参数均有一定的 物理含义 在网络初始化的时候 这些参数的初始值可以根据系统的模糊或定 性的知识来确定 这样网络 n 能够很快收敛 在本案例中 由于训练数据由地 表水评价标准均匀线性内插得到 并且根据表达式可以看到 输入数据对网络 第 11 页 输出的影响都是相同的 水质评测是根据水质评测标准和采样水样本各项指标值 通过一定的数学 模型计算确定采样水样本的水质等级 水质评测的目的是能够准确判断出采样 水样本的污染等级 为污染防治和水源保护提供依据 水体水质的分析主要包括氨氮 溶解氧 化学需氧量 高锰酸盐指数 总 磷和总氮六项指标 其中氨氮是有机物有氧分解的产物 可导致水富营养化现 象产生 是水体富营养化的指标 化学需氧量是采用强氧化剂络酸钾处理水样 消耗的氧化剂量是水中还原性物质多少的指标 高锰酸钾是反映有机污染的指 标 溶解氧是溶解在水中的氧 总磷是水体中的含磷量 是衡量水体富营养化 的指标 总氮是水体中氮的含量 也是衡量水体富营养化的指标 模糊神经网络训练用训练数据训练模糊神经网络 由于水质评价真是数据 比较难找 所以采用了等隔均匀分布方式内插水质指标标准数据生成样本的方 式来生成训练样本 采用的水质指标标准数据来自 表 3 3 网络反复训练 100 次 表 3 3 地表水环境质量标准 分类I 类II 类III 类IV 类V 类 氨氮 mgL 1 0 150 501 01 52 0 溶解氧 mgL 1 7 56 05 03 02 0 化学需氧量 mgL 1 1515203040 高锰酸盐指数 mgL 1 2 04 06 01015 总磷 mgL 1 0 020 100 200 300 40 总氮 mgL 1 0 200 501 01 52 0 第 12 页 水质的评价是根据水质评价标准和采样水样各个项指标值 通过一定的数 学模型计算确定采样水样本的水质等级 水质评价的目的是能够判断出采样水 样本的污染等级 为污染防治和水样的保护提供依据用训练好的模糊神将网络 评价嘉陵江水质 各采样口水样指标值存储在 data2 mat 文件中 根据网络预 测值得到水质等级指标 预测值小于 1 5 时水质登记为 1 级 预测值在 1 5 2 5 时水质等级为 2 级 预测值在 2 5 3 5 时水质等级为 3 级 预测值在 3 5 4 5 时水质等级为 4 级 预测值大于 4 5 时水质等级为 5 级 用训练好的模糊神经网络评价嘉陵江各取水口 2003 到 2008 年每季度采样 水水质等级 网络评价结果如图 3 4 所示 各取水口水样评价等级如 表 3 5 所示 图 3 4 网络评价结果 第 13 页 表 3 5 各取水口水样评价等级 时间 2003 12003 22003 32003 42004 12004 22004 32004 4 红工水厂 33534322 高家花园水厂 44333323 大溪沟水厂 44334322 时间 2005 12005 22005 32005 42006 12006 22006 32006 4 红工水厂 32233223 高家花园水厂 32233223 大溪沟水厂 42233223 时间 2007 12007 22007 32007 42008 12008 22008 32008 4 红工水厂 32233223 高家花园水厂 33333323 大溪沟水厂 33223333 从水质评价等级可以看出嘉陵江上 中 下游三个取水口水样水质在 2003 到 2004 年间有一定改善 进几年变化不大 基本维持在 2 3 级左右 总体来 说上游水质评价结果优于下游水质评价结果 网络评价水质等级变化趋势同真 实指标数据变化趋势相符 说明了模糊神经网络评价的有效性 第 14 页 4 4 总结与展望总结与展望 4 14 1 总结总结 从水质量评价等级可以看出嘉陵汇上 中 下游三个取水口水样质量有一 定改善 近几年变化不大 基本维持在 2 3 级左右 总体来说 上游水质量评 价结果优于下游水质量结果 网络评价水质等级变化趋势同真实指标数据变化 趋势相符 说明了模糊神经网络评价的有效性 结合水质级别 分类标准本身都是客观存在的模糊概念 基于这一点考虑 而建构的学习结合型 FNN 模型 并将它应用于水质评价的工作中 水质评价 FNN 模型的节点及参数都有清晰的物理意义 便于理解 FNN 模型具有局部逼近功能 同时兼顾 ANN 与 FS 两者的优点 它既能模拟 人脑的结构以及对信息的记忆和处理功能 擅长从输入输出数据中学习有用的 知识 也能模拟人的思维和语言中对模糊信息的表达和处理方式 擅长利用人 的经验性知识 水质评价 FNN 模型可方便地对模糊规则进行增加或删减 评价方法更具灵 活性 应用方便 本论文已训练好的七个参数的水质评价 FNN 模型可用于对任 何一个具有该七个参数监测值的水质样本 因此 该水质评价方法适应性强 具有较好的实用意义 水质评价 FNN 模型考虑环境水质类别变化的连续性 使评价方法更接近客 观实际 4 24 2 展望展望 神经网络和模糊系统相结合 如何进一步提高其计算精度和计算速度是今 后研究的重点之一 环境科学日益向着定量化方向发展 运用数学方法进行研 究势在必行 我坚信运用模糊神经网络进行水质综合评价的前景十分广阔 并且 希望就此推动环境综合评价的发展 本论文在 FNN 模型的水质评价方面做了一些富有成效的工作 但无论是模 型理论 模型本身 算法的改进 FNN 在水质评价乃至水污染控制规划领域的 应用都还有待进一步深化 完善甚至修正 FNN 模型的优劣直接影响其在水质评价中应用效果的好坏 因此 研究解 决 FNN 的结构优化问题 过拟合问题 泛化能力问题 以及研究适应复杂多变 的水污染控制问题的新型 FNN 模型是今后屯点的基础性理论工作 进一步研究 模糊方法及水质评价乃至水污染控制规划的结合仍是今后需努力的研究方向 第 15 页 参考文献参考文献 1 杜伟 基于神经网络的水质评价与预测的探索 D 天津 天津大学 2007 2 王海霞 模糊神经网络在水质评测中的作用 D 重庆 重庆大学 2002 3 宋浩国 人工神经网络在水质模拟与水质评价中的应用研究 D 重庆 重庆大学 2002 4 周忠寿 基于 T S 模型的模糊神经网络在水质评价中的应用 D 南京 河海大学 2007 5 邹美玲 基于人工神经网络的济南市北沙河河水环境综合整治研究 D 济南 山东师 范大学 2008 6 张伟 基于人工神经网络吉林市地下水水质现状评价及预测研究 D 长春 吉林大学 2007 7 Hopfield J J and Tank D W Neural Computation of Decisions in Optimization Problems Biol Cyber 1985 Vol52 141 152 8 Rumelhart D E McClelland J L Parallel Distributed Processing Explorations in the Microstructure of Cognition Cambridge Bradford Books MIT Press 1986 1 112 9 Specht D F Probabilistic Neural Networks Neural Networks 1990 Vo1 3 109 118 10 Werbos P Beyond Regression New Tools for Prediction and Analysis in the Behavioral Sciences PhD Dissertation Harvard University 1974 11 Hecht Nielsen R Performance Limits of Optical Electro optical and Electronic 第 16 页 致谢致谢 本课题在选题及研究过程中得到毛力老师的亲切关怀和悉心指导 他严肃 的科学态度 严谨的治学精神 精益求精的工作作风 深深地感染和激励着我 从课题的选择到项目的最终完成 毛力老师都始终给予我细心的指导和不懈的 支持 在此谨向毛力老师致以诚挚的谢意和崇高的敬意 罗小刚 通信 1202 班 第 17 页 附录附录 清空环境变量 clc clear 参数初始化 xite 0 001 alfa 0 05 网络节点 I 6 输入节点数 M 12 隐含节点数 O 1 输出节点数 系数初始化 p0 0 3 ones M 1 p0 1 p0 p0 2 p0 1 p1 0 3 ones M 1 p1 1 p1 p1 2 p1 1 p2 0 3 ones M 1 p2 1 p2 p2 2 p2 1 p3 0 3 ones M 1 p3 1 p3 p3 2 p3 1 p4 0 3 ones M 1 p4 1 p4 p4 2 p4 1 p5 0 3 ones M 1 p5 1 p5 p5 2 p5 1 p6 0 3 ones M 1 p6 1 p6 p6 2 p6 1 参数初始化 c 1 rands M I c 1 c c 2 c 1 b 1 rands M I b 1 b b 2 b 1 maxgen 100 进化次数 网络测试数据 并对数据归一化 load data1 input train output train input test output test 选连样本输入输出数据归一化 inputn inputps mapminmax input train outputn outputps mapminmax output train n m size input train 网络训练 循环开始 进化网络 for iii 1 maxgen iii 第 18 页 for k 1 m x inputn k 输出层结算 for i 1 I for j 1 M u i j exp x i c j i 2 b j i end end 模糊规则计算 for i 1 M w i u 1 i u 2 i u 3 i u 4 i u 5 i u 6 i end addw sum w for i 1 M yi i p0 1 i p1 1 i x 1 p2 1 i x 2 p3 1 i x 3 p4 1 i x 4 p5 1 i x 5 p6 1 i x 6 end addyw yi w 网络预测计算 yn k addyw addw e k outputn k yn k 计算 p 的变化值 d p zeros M 1 d p xite e k w addw d p d p 计算 b 变化值 d b 0 b 1 for i 1 M for j 1 I d b i j xite e k yi i addw addyw x j c i j 2 w i b i j 2 addw 2 end end 更新 c 变化值 for i 1 M for j 1 I d c i j xite e k yi i addw addyw 2 x j c i j w i b i j addw 2 end 第 19 页 end p0 p0 1 d p alfa p0 1 p0 2 p1 p1 1 d p x 1 alfa p1 1 p1 2 p2 p2 1 d p x 2 alfa p2 1 p2 2 p3 p3 1 d p x 3 alfa p3 1 p3 2 p4 p4 1 d p x 4 alfa p4 1 p4 2 p5 p5 1 d p x 5 alfa p5 1 p5 2 p6 p6 1 d p x 6 alfa p6 1 p6 2 b b 1 d b alfa b 1 b 2 c c 1 d c alfa c 1 c 2 p0 2 p0 1 p0 1 p0 p1 2 p1 1 p1 1 p1 p2 2 p2 1 p2 1 p2 p3 2 p3 1 p3 1 p3 p4 2 p4 1 p4 1 p4 p5 2 p5 1 p5 1 p5 p6 2 p6 1 p6 1 p6 c 2 c 1 c 1 c b 2 b 1 b 1 b end E iii sum abs e end figure 1 plot outputn r hold on plot yn b hold on plot outputn yn g legend 实际输出 预测输出 误差 fontsize 12 title 训练数据预测 fontsize 12 xlabel 样本序号 fontsize 12 ylabel 水质等级 fontsize 12 网络预测 数据归一化 inputn test mapminmax apply input test inputps n m size inputn test 第 20 页 for k 1 m x inputn test k 计算输出中间层 for i 1 I for j 1 M u i j exp x i c j i 2 b j i end end for i 1 M w i u 1 i u 2 i u 3 i u 4 i u 5 i u 6 i end addw 0 for i 1 M addw addw w i end for i 1 M yi i p0 1 i p1 1 i x 1 p2 1 i x 2 p3 1 i x 3 p4 1 i x 4 p5 1 i x 5 p6 1 i x 6 end addyw 0 for i 1 M addyw addyw yi i w i end 计算输出 yc k addyw addw end 预测结果反归一化 test simu mapminmax reverse yc outputps 作图 figure 2 plot output test r hold on plot test simu b hold on plot test simu output test g legend 实际输出 预测输出 误差 fontsize 12 title 测试数据预测 fontsize 12 第 21 页 xlabel 样本序号 fontsize 12 ylabel 水质等级 fontsize 12 嘉陵江实际水质预测 load data2 hgsc gjhy dxg 红工水厂 zssz hgsc 数据归一化 inputn test mapminmax apply zssz inputp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年【R1快开门式压力容器操作】考试题库及答案
- 2025年公路水运工程试验检测师公共基础试题库及答案(法规与技术标准)
- 2025年监理工程师之交通工程目标控制考试题库含答案a卷
- 桥梁招标课件
- 2025年品牌营销经理招聘面试模拟题与技巧解析
- 2026届安徽省亳州市第三十二中学高三化学第一学期期中联考模拟试题含解析
- 2025年电商运营岗位笔试模拟题及答案解析
- 2025护士资格证考试题库及答案
- 2025年大数据与人工智能课程考试试题及答案
- 2025年旅游管理与规划项目的考试试题及答案
- 小升初测试(试题)-2023-2024学年六年级下册数学苏教版
- 青少年抑郁症的预防和干预策略
- 考公行测言语理解与表达题库之选词填空公考公务员考试省考国考310题(含答案)
- 2021年度计算机审计初级网络培训测试题
- 康复科康复评定表
- 输液反应-完整版
- 【高质量】如何进行有效的校本研修PPT文档
- 水泥生产企业生产安全事故综合应急预案
- 食堂安全培训-课件
- 胆总管结石伴急性胆管炎
- 制度编写书写规范
评论
0/150
提交评论