




已阅读5页,还剩59页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线与圆的方程复习讲义1 直线与方程考点1直线的倾斜角2斜率公式3直线方程的五种形式4两条直线的位置关系5几种距离6. 直线系方程二圆与方程考点1圆的定义2圆的标准方程3圆的一般方程4确定圆的方程的方法和步骤5点与圆的位置关系6判断直线与圆的位置关系常用的两种方法7圆与圆的位置关系三直线与方程考法题型一直线的倾斜角与斜率例1经过P(0,1)作直线l,若直线l与连接A(1,2),B(2,1)的线段总有公共点,则直线l的斜率k和倾斜角的取值范围分别为_,_.思维点拨注意倾斜角是锐角还是钝角答案1,10,)解析如图所示,结合图形:为使l与线段AB总有公共点,则kPAkkPB,而kPB0,kPA0,故k0时,为锐角又kPA1,kPB1,1k1.又当0k1时,0;当1k0时,.故倾斜角的取值范围为0,)思维升华直线倾斜角的范围是0,),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分与两种情况讨论由正切函数图象可以看出,当时,斜率k0,);当时,斜率不存在;当时,斜率k(,0)(1)若直线l与直线y1,x7分别交于点P,Q,且线段PQ的中点坐标为(1,1),则直线l的斜率为()A. B C D.(2)直线xcos y20的倾斜角的范围是()A. B.C. D.答案(1)B(2)B解析(1)依题意,设点P(a,1),Q(7,b),则有,解得a5,b3,从而可知直线l的斜率为.(2)由xcos y20得直线斜率kcos .1cos 1,k.设直线的倾斜角为,则tan .结合正切函数在上的图象可知,0或.题型二求直线的方程例2根据所给条件求直线的方程:(1)直线过点(4,0),倾斜角的正弦值为;(2)直线过点(3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.解(1)由题设知,该直线的斜率存在,故可采用点斜式设倾斜角为,则sin (00,b0),点P(3,2)代入得12 ,得ab24,从而SAOBab12,当且仅当时等号成立,这时k,从而所求直线方程为2x3y120.方法二依题意知,直线l的斜率k存在且k0.则直线l的方程为y2k(x3) (k0;当k0时,直线为y1,符合题意,故k0.(3)解由l的方程,得A,B(0,12k)依题意得解得k0.S|OA|OB|12k|(224)4,“”成立的条件是k0且4k,即k,Smin4,此时直线l的方程为x2y40.求直线方程忽视零截距致误典例:(12分)设直线l的方程为(a1)xy2a0 (aR)(1)若l在两坐标轴上截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围易错分析本题易错点求直线方程时,漏掉直线过原点的情况规范解答解(1)当直线过原点时,该直线在x轴和y轴上的截距为零,a2,方程即为3xy0.2分当直线不经过原点时,截距存在且均不为0.a2,即a11.4分a0,方程即为xy20.6分(2)将l的方程化为y(a1)xa2,或a1.10分综上可知a的取值范围是a1.12分温馨提醒(1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.方法与技巧直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率(2)直线的倾斜角和斜率k之间的对应关系:009090900不存在k0失误与防范与直线方程的适用条件、截距、斜率有关问题的注意点(1)明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x、y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线(2)截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零(3)求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.A组专项基础训练(时间:45分钟)1若方程(2m2m3)x(m2m)y4m10表示一条直线,则参数m满足的条件是()Am Bm0Cm0且m1 Dm1答案D解析由解得m1,故m1时方程表示一条直线2直线xsin ycos 0的倾斜角是()A B.C. D.答案D解析tan tan tan ,0,),.3直线x(a21)y10的倾斜角的取值范围是()A. B.C. D.答案B解析直线的斜率k,1k0,则倾斜角的范围是.4两条直线l1:1和l2:1在同一直角坐标系中的图象可以是()答案A解析化为截距式1,1.假定l1,判断a,b,确定l2的位置,知A项符合5已知直线PQ的斜率为,将直线绕点P顺时针旋转60所得的直线的斜率为()A. B C0 D1答案A解析直线PQ的斜率为,则直线PQ的倾斜角为120,所求直线的倾斜角为60,tan 60.6若直线l的斜率为k,倾斜角为,而,则k的取值范围是_答案,0)解析当时,tan 1,k1.当时,tan 1或0即可,解得1a或a0.综上可知,实数a的取值范围是(,)(0,)8若ab0,且A(a,0)、B(0,b)、C(2,2)三点共线,则ab的最小值为_答案16解析根据A(a,0)、B(0,b)确定直线的方程为1,又C(2,2)在该直线上,故1,所以2(ab)ab.又ab0,故a0,b0,b0)过点(1,1),则该直线在x轴,y轴上的截距之和的最小值为()A1 B2C4 D8答案C解析直线axbyab (a0,b0)过点(1,1),abab,即1,ab(ab)2224,当且仅当ab2时上式等号成立直线在x轴,y轴上的截距之和的最小值为4.12过点P(2,3)且与两坐标轴围成的三角形面积为12的直线共有()A1条 B2条C3条 D4条答案C解析设过点P(2,3)且与两坐标轴围成的三角形面积为12的直线的斜率为k,则有直线的方程为y3k(x2),即kxy2k30,它与坐标轴的交点分别为M(0,2k3)、N.再由12|OM|ON|2k3|2|,可得|4k12|24,即4k1224,或4k1224.解得k或k或k,故满足条件的直线有3条13若直线l1:yk(x6)与直线l2关于点(3,1)对称,则直线l2恒过定点_答案(0,2)解析直线l1:yk(x6)恒过定点(6,0),定点关于点(3,1)对称的点为(0,2)又直线l1:yk(x6)与直线l2关于点(3,1)对称,故直线l2恒过定点(0,2)14已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是_答案3解析直线AB的方程为1,设P(x,y),则x3y,xy3yy2(y24y)(y2)243.即当P点坐标为时,xy取最大值3.15设点A(1,0),B(1,0),直线2xyb0与线段AB相交,则b的取值范围是_答案2,2解析b为直线y2xb在y轴上的截距,如图,当直线y2xb过点A(1,0)和点B(1,0)时b分别取得最小值和最大值b的取值范围是2,2题型一两条直线的平行与垂直例1已知两条直线l1:axby40和l2:(a1)xyb0,求满足下列条件的a,b的值(1)l1l2,且l1过点(3,1);(2)l1l2,且坐标原点到这两条直线的距离相等思维点拨本题考查两直线平行或垂直成立的充要条件,解题易错点在于忽略斜率不存在的情况解(1)方法一由已知可得l2的斜率存在,k21a.若k20,则1a0,a1.l1l2,直线l1的斜率k1必不存在,即b0.又l1过点(3,1),3a40,即a(矛盾)此种情况不存在,k20.即k1,k2都存在,k21a,k1,l1l2,k1k21,即(1a)1.又l1过点(3,1),3ab40.由联立,解得a2,b2.方法二由于l1l2,所以a(a1)(b)10.即ba2a.又因为l1过点(3,1)所以3ab40.联立可得经验证,符合题意故a2,b2.(2)l2的斜率存在,l1l2,直线l1的斜率存在,k1k2,即1a.又坐标原点到这两条直线的距离相等,且l1l2,l1,l2在y轴上的截距互为相反数,即b.联立,解得或a2,b2或a,b2.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况同时还要注意x、y的系数不能同时为零这一隐含条件(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论已知两直线l1:xysin 10和l2:2xsin y10,求的值,使得:(1)l1l2;(2)l1l2.解(1)方法一当sin 0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin 0时,k1,k22sin .要使l1l2,需2sin ,即sin .所以k,kZ,此时两直线的斜率相等故当k,kZ时,l1l2.方法二由A1B2A2B10,得2sin210,所以sin .所以k,kZ.又B1C2B2C10,所以1sin 0,即sin 1.故当k,kZ时,l1l2.(2)因为A1A2B1B20是l1l2的充要条件,所以2sin sin 0,即sin 0,所以k,kZ.故当k,kZ时,l1l2.题型二两直线相交例2求经过直线l1:3x2y10和l2:5x2y10的交点,且垂直于直线l3:3x5y60的直线l的方程思维点拨可先求出l1与l2的交点,再用点斜式;也可利用直线系方程求解解方法一先解方程组得l1,l2的交点坐标为(1,2),再由l3的斜率求出l的斜率为,于是由直线的点斜式方程求出l:y2(x1),即5x3y10.方法二由于ll3,故l是直线系5x3yC0中的一条,而l过l1,l2的交点(1,2),故5(1)32C0,由此求出C1,故l的方程为5x3y10.方法三由于l过l1,l2的交点,故l是直线系3x2y1(5x2y1)0中的一条,将其整理,得(35)x(22)y(1)0.其斜率为,解得,代入直线系方程得l的方程为5x3y10.思维升华(1)两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为坐标的点即为交点(2)常见的三大直线系方程与直线AxByC0平行的直线系方程是AxBym0(mR且mC)与直线AxByC0垂直的直线系方程是BxAym0(mR)过直线l1:A1xB1yC10与l2:A2xB2yC20的交点的直线系方程为A1xB1yC1(A2xB2yC2)0(R),但不包括l2.如图,设一直线过点(1,1),它被两平行直线l1:x2y10,l2:x2y30所截的线段的中点在直线l3:xy10上,求其方程解与l1、l2平行且距离相等的直线方程为x2y20.设所求直线方程为(x2y2)(xy1)0,即(1)x(2)y20.又直线过(1,1),(1)(1)(2)120.解得.所求直线方程为2x7y50.题型三距离公式的应用例3正方形的中心为点C(1,0),一条边所在的直线方程是x3y50,求其他三边所在直线的方程思维点拨中心C到各边的距离相等解点C到直线x3y50的距离d.设与x3y50平行的一边所在直线的方程是x3ym0(m5),则点C到直线x3ym0的距离d,解得m5(舍去)或m7,所以与x3y50平行的边所在直线的方程是x3y70.设与x3y50垂直的边所在直线的方程是3xyn0,则点C到直线3xyn0的距离d,解得n3或n9,所以与x3y50垂直的两边所在直线的方程分别是3xy30和3xy90.思维升华正方形的四条边两两平行和垂直,设平行直线系和垂直直线系可以较方便地解决,解题时要结合图形进行有效取舍本题的解法可以推广到求平行四边形和矩形各边所在直线的方程运用点到直线的距离公式时,需把直线方程化为一般式;运用两平行线的距离公式时,需先把两平行线方程中x,y的系数化为相同的形式已知点P(2,1)(1)求过P点且与原点距离为2的直线l的方程;(2)求过P点且与原点距离最大的直线l的方程,并求出最大距离(3)是否存在过P点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由解(1)过P点的直线l与原点距离为2,而P点坐标为(2,1),可见,过P(2,1)垂直于x轴的直线满足条件此时l的斜率不存在,其方程为x2.若斜率存在,设l的方程为y1k(x2),即kxy2k10.由已知,得2,解之得k.此时l的方程为3x4y100.综上,可得直线l的方程为x2或3x4y100.(2)作图可证过P点与原点O距离最大的直线是过P点且与PO垂直的直线,由lOP,得klkOP1.所以kl2.由直线方程的点斜式得y12(x2),即2xy50,即直线2xy50是过P点且与原点O距离最大的直线,最大距离为.(3)由(2)可知,过P点不存在到原点距离超过的直线,因此不存在过P点且与原点距离为6的直线题型四对称问题例4已知直线l:2x3y10,点A(1,2)求:(1)点A关于直线l的对称点A的坐标;(2)直线m:3x2y60关于直线l的对称直线m的方程;(3)直线l关于点A(1,2)对称的直线l的方程思维点拨解决对称问题,不管是轴对称还是中心对称,一般都要转化为点之间的对称问题解(1)设A(x,y),再由已知解得A(,)(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m上设对称点为M(a,b),则解得M(,)设m与l的交点为N,则由得N(4,3)又m经过点N(4,3),由两点式得直线方程为9x46y1020.(3)设P(x,y)为l上任意一点,则P(x,y)关于点A(1,2)的对称点为P(2x,4y),P在直线l上,2(2x)3(4y)10,即2x3y90.思维升华(1)解决点关于直线对称问题要把握两点,点M与点N关于直线l对称,则线段MN的中点在直线l上,直线l与直线MN垂直(2)如果是直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题(3)若直线l1、l2关于直线l对称,则有如下性质:若直线l1与l2相交,则交点在直线l上;若点B在直线l1上,则其关于直线l的对称点B在直线l2上(2013湖南)在等腰直角三角形ABC中,ABAC4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA发射后又回到原点P(如图)若光线QR经过ABC的重心,则AP等于()A2 B1C. D.答案D解析建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为xy4,ABC的重心为,设P(a,0),其中0a0),则有解得故圆的方程是x2y26x2y10.巧妙解法(几何法)曲线yx26x1与y轴的交点为(0,1),与x轴的交点为(32,0),(32,0)故可设C的圆心为(3,t),则有32(t1)2(2)2t2,解得t1.则圆C的半径为3,所以圆C的方程为(x3)2(y1)29.温馨提醒(1)一般解法(代数法):可以求出曲线yx26x1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算显然几何法比代数法的计算量小,因此平时训练多采用几何法解题.方法与技巧1确定一个圆的方程,需要三个独立条件“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 包饺子活动方案策划(3篇)
- 河源企业活动拓展策划方案(3篇)
- 路面病害的施工方案(3篇)
- 公司生日活动策划创意方案(3篇)
- 新航线考试题库及答案
- 北京市门头沟区2023-2024学年八年级下学期期末质量监测道德与法制考点及答案
- 北京市门头沟区2023-2024学年八年级上学期期末考试英语考点及答案
- 忻州医疗面试题目及答案
- 玩具宝贝700字(10篇)
- 企业员工手册及政策宣导模板
- 口腔门诊运营管理实务
- 2024年湖南省古丈县卫生局公开招聘试题带答案
- 毛巾关键工序管理制度
- 2025至2030年中国电动船行业市场供需态势及发展前景研判报告
- 2025-2030年中国城市轨道交通行业市场现状供需分析及投资评估规划分析研究报告
- 2025安徽龙亢控股集团有限公司招聘招聘21人笔试参考题库附带答案详解析集合
- 国企职称评聘管理制度
- T/CNCA 048-2023矿用防爆永磁同步伺服电动机通用技术条件
- 安装家具合同协议书范本
- 月饼代销合同协议书
- 购买肉牛合同协议书
评论
0/150
提交评论