




免费预览已结束,剩余40页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
绪论地球化学学科的研究内容1)元素及同位素在地球及各子系统中的组成2)元素的共生组合及赋存形式3)元素的迁移和循环4)研究元素(同位素)的行为5)元素的地球化学演化。简述地球化学学科的研究思路和研究方法:研究思路:见微而知著,即通过观察原子之微,以求认识地球和地质过程之著。研究方法:一)野外阶段: 1)宏观地质调研。明确研究目标和任务,制定计划2)运用地球化学思维观察认识地质现象3)采集各种类型的地球化学样品二)室内阶段:1)“量”的研究,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的分配量。元素量的研究是地球化学的基础和起点,为此,对分析方法的研究的要求:首先是准确;其次是高灵敏度;第三是快速、成本低2)“质”的研究,即元素的结合形式和赋存状态的鉴定和研究3)地球化学作用的物理化学条件的测定和计算4)归纳、讨论:针对目标和任务进行归纳、结合已有研究成果进行讨论。 第一章1. 克拉克值:元素在地壳中的丰度,称为克拉克值。元素在宇宙体或地球化学系统中的平均含量称之为丰度。丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。2. 富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。3. 载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。4. 浓集系数 =工业利用的最低品位/克拉克值。为某元素在矿床中可工业利用的最低品位与其克拉克值之比。5.球粒陨石:是石陨石的一种。(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。划分为: E群顽火辉石球粒陨石,比较稀少;O群普通球粒陨石: H亚群高铁群,橄榄石古铜辉石球粒损石;L亚群低铁群,橄榄紫苏辉石球粒陨石; LL亚群低铁低金属亚群;C群碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。为研究生命起源提供重要信息。分型、型和型。 型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。7.地球化学省:在一个区域内不仅一两种元素丰度很高,对应矿床成群出现,而且在历史演化中,矿产产出率也特别高,这一区段叫地球化学省。8.对角线规律:元素周期表内位于一条对角线的元素,相互之间容易发生类质同象。9.地球化学异常:一个富含矿的区段,地球化学特征明显不同于无矿区域的现象称为地球化学异常,常常反应矿产分布的异常。1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍铁相的平均成分加5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。(二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。这种设想成为推测地球内部结构和化学成分的重要依据之一。(三)碳质球粒陨石的有机化合物成分是研究地球早期生命系统的化学演化及来源的重要依据和信息,在碳质球粒陨石中已发现有机化合物60多种。有人认为地球早期生命系统的化学演化不一定来源于行星的大气,而有可能来自太阳星云凝聚时已合成的有机质。2比较太阳系、地球、地壳主要化学元素丰度特征的异同点,说明自然界元素丰度的基本特征和决定自然体系中元素丰度的最基本因素:(1)特征的异同:太阳系:HHeONCSiMgS地球;FeOMgSiNiSCaAlCaNa地壳:OSiAlFeCaNaKMgTiH硅酸盐在地球表层富集,较难熔的镁铁硅酸盐和金属铁下沉。(2)自然界元素丰度的基本特征:个元素丰度随原子序数的增大而呈指数下降;在Z45之后丰度值又相近。原子序数为偶数的同位素丰度大于奇数者(中子数、质量数同)奥多-哈根斯法则;四倍原则:如O(A=16),质子数为4的倍数Li、P、B丰度很低,为亏损元素(核子结合能低,形成后易分解)Fe和O过量(核子结合能最高,核子稳定)原子序数(质子数或中子数)是“幻数”的元素丰度高(氦、氧、钙等:2、8、14、20、2850、82、126)(3)决定自然体系中元素丰度的最基本因素:与原子结构有关具有最稳定原子核的元素分布最广,当中子数和质子数比例适当时核最稳定。如在原子序数FeO的生成热,集中分布于岩石圈;与氧亲和力强。亲氧元素主要有-碱金属、碱土金属、稀土元素、稀有元素等-Li 、Na 、K 、Rb 、Cs 、Mg 、Ca 、Sr 、Ba 、Al 、Zr 、Hf 、Nb 、Ta 、REE等。亲氧元素主要熔于硅酸盐熔体;亲硫性(亲铜性) -阳离子和硫结合成共价键为主的硫化物和硫盐的性质。亲硫元素其离子最外层具有S2P6d10的铜型18电子结构,具较大的电负性和离子半径、较低的电价;多为逆磁性,氧化物生成热 阳离子-阳离子高价态; 地幔:阴离子 阳离子-阳离子低价态;整个地球: 阴离子1为岩浆热液成因矿床;(wCo/wNi) 0.001 mm,有特定化学性质,用肉眼或显微镜可见,可用物理方法分离出单矿物的赋存形式。2)类质同象形式-特点是进入晶格,构成结构混入物.如要分离须破坏矿物的晶格。3)超显微非结构混入物形式-直径离子键分子键;半径:半径越大,外电子易失,溶解于水的能力越大;电价:电价越高越难溶。阳离子:一价-NaCl 、K2SO4、(NH4)+ 易溶 二价-CaSO4 、BaSO4三价-Al3+、Fe3+四价-Si4+、Ti4+、Zr4+、Hf4+ 难溶 阴离子:一价-Cl - 、HO- 、(NO3) -易溶 二价-(SO4) 2- 、(CO3) 2-三价-(PO4) 3-;四价-(SiO4)4- 难溶(2)元素的存在形式;(3)溶液中组分的类型和浓度;(4)环境的物理化学条件等,如温度,PH、EH值的变化。2.介质pH值对元素迁移的控制规律:(1)介质pH值控制金属离子的溶解迁移:pH7,碱性条件下相反;但Se+6、Mo+6、V+5、As+5呈高价离子迁移;两性元素在强酸强碱下溶解迁移,在正常水体PH=4-9内难溶(2)介质的pH控制氢氧化物从溶液中的沉淀,如Mn(OH)2 pH=9.0;Mg(OH)2 pH=10.5;KOH pH11;NaOH与氢氧化物溶度积的小大:Hg2+Ni2+Cu2+Zn2+Fe2+ Pb2+Co2+Cd2+ Mn2+ 偏碱性的元素有可能在较高的PH范围迁移。(3)同一元素不同价态的氢氧化物沉淀时的pH值不同:例如:Fe(OH)3 pH=2.48; Fe(OH)2 pH=5.5(4)弱电解质CO2、H2S等在不同pH的水中溶解形式不同.例如:CO2在水中溶解形式有HCO3-、CO3-、H2CO3等(5)溶液pH变化时,对不同性质组份的溶解度产生不同的影响:当pH由小大时,有三种情况溶解度减少:Fe (OH)3,Fe(OH)2,CaCO3(碱性物质)溶解度增大:SiO2(酸性物质)溶解度开始变小而后增大:A12O3两性物质(pH=4-10时几乎不溶)(6)介质pH值的变化控制所有包括H+及OH-反应的平衡移动方向(电离反应、复分解反应、水解、中和及络合反应)3.Eh对元素迁移的控制:介质(环境)的氧化还原电位对变价元素的共生组合起决定作用:环境的氧化还原电位是体系中总体的电位Eh,如果某些离子与该体系电位不符,则必然要发生自发的氧化还原反应,即凡是高于此值的价离子自发地还原;而低于此值的氧化还原反应的低价离子自发地氧化。 例如:Fe2+、Mn2+在内生作用中是共生元素,还原状态时都是二价。 a.酸性介质:I。当环境的Eh介质的Eh0.771ev时,式可以反应,式不能进行反应,则 Fe3+沉淀与Mn2+共存。实际上,在酸性介质中,即pH=1_7时,氧化的上限为1.16_ 0.82 ev(EH= 1.22 _ 0 .059 pH),小于1.28ev,达不到 Mn4+的条件,所以酸性介质中只有Mn2+存在,而不可能有Mn4+存在。b.碱性介质pH7时,可以出现Mn4+O2沉淀:Fe(OH)2+OH-Fe(OH)3+e Eho= -0.56 Mn (OH)2+2(OH ) ;Mn 4+ O2+2H2O+2 e ;Eho= -0.05所以,任何时候都见不到Fe(OH)2与MnO2共生4.判断能否共存:Fe2+与Cu2+(1)a.酸性介质:Cu=Cu2+2e- Eho=0.337eV; Cu+=Cu2+e- Eho=0.167eV-Fe3+3H2O=Fe(OH)3+3H+3e- Eho=0.98eV-; Fe=Fe2+ +2e- Eho=-0.44eV; Fe2+=Fe3+e- Eho=0.771eV.当环境的Eh介质的Eh0.167eV时,式可以反应,式不能进行反应,Fe3+与Pb2+共存。.当环境的Eh0.771eV时,皆可反应,则Cu2+,Fe3+共存。b.碱性介质:Cu2O+2(OH)-+H2O=2Cu(OH)2+2e-Eho=-0.08eV;2Cu+2OH-=Cu2O+H2O+2e- Eho=-0.36eV Fe(OH)2+OH-=Fe(OH)3+e-Eho=-0.55eV;Fe+2OH-=Fe(OH)2+2e- Eho=-0.89eV;由于在碱性条件下,Eh最小时,PH=14,Eh=1.22-0.059,PH=0.39eV,上面两式皆可反应,则Cu(OH)2与Fe(OH)3共存。Fe2+与Pb4+:酸性介质:Fe2+=Fe3+e-Eh=0.771ev.Pb2+2H2O=PbO2+4H+2e-Eh=1.45ev.a、当环境的EhEh, EhEh.即:25克共存的Fe2+.Pb2+ .b、EhEh介Eh时,式反应式不反应。即,Fe3+与Pb2+共存。实际上,在酸性介质中PH=1-7时,氧化上限为1.16-0.82ev(Eh=1.22-0.59PH)。小于1.45ev达不到Pb4+反应的条件,故酸性介质中只Pb2+存在,而不会有Pb4+存在。碱性介质:Fe(OH)2+OH-=Fe(OH)3+e- Eh=-0.55ev. PbO+2(OH)-= PbO2+H2O+2e- Eh=0.248ev.由于碱性介质中Eh最小时,PH=1.22-0.59PH=0.39ev。上面式都向右移动,则Fe(OH)3与PbO2共存,任何时候都见不到Fe(OH)2与PbO2共存Fe2+与Co3+:a.酸性介质:Fe3+3H2O=Fe(OH)3+3H+3e- Eho=0.98eV-; Fe=Fe2+ +2e- Eho=-0.44eV; Fe2+=Fe3+e- Eho=0.771eV; Co2+=Co3+e- Eho=1.82eV;.当环境的Eh介质的Eh0.167eV时,式可以反应,式不能进行反应,Fe3+与Co2+共存。实际上,在酸性介质中,即PH=1-7时,氧化的上限为1.16-0.82(Eh=1.22-0.059PH),小于1.28,达不到Co3+的条件,所以酸性介质中只有Co2+存在,而不可能有Co3+。b.碱性介质:Fe(OH)2+OH-=Fe(OH)3+e- Eho=-0.55eV;Fe+2OH-=Fe(OH)2+2e- Eho=-0.89eV;Co(OH)2+OH-=Co(OH)3+e- Eho=0.17eV在碱性介质中,Eh最小时,Eh=1.22-0.059PH=0.39eV, 皆可反应,则Fe(OH)3与Co(OH)3共存,即任何时候都见不到Fe(OH)2和Co(OH)3共生。第四章1.微迹元素:热力学角度定义:在地质体或相中,浓度低到使其行为服从稀溶液亨利定律作用范围的元素.由于难以界定元素服从稀溶液亨利定律作用的范围,故人们习惯上把所研究体系中含量小于0.1重量的元素称为微量元素.O、Si、Al、Fe、Ca、Na、K、Mg、Ti组成地壳和地幔质量的99%,其余80余种相对可称为微量元素。2.大离子亲石元素(LIL):指离子半径大、电价低的亲石活动性元素,例如:K、Rb 、Cs 、Sr、Ba、Tl等.大离子亲石元素的半径越大,越在地壳表层富集;在岩浆结晶时也越晚期进入矿物相,富集于晚期矿物中;大离子亲石元素易溶解于流体相,被流体相携带迁移.3.高场强元素(HFS)指离子半径小、电价高的亲石非活动性元素,即 Z/r 3的元素.例如:Nb、Ta、Zr、Hf、P、Y等.高场强元素由于高的离子电位,易形成岩浆副矿物,如锆石、磷灰石等独立相.高场强元素的活动性小:熔点高,难熔于熔体相;不溶于水,难被水溶解或携带迁移. 4.能斯特分配定律:在一定温度、压力下,溶质在互不 相溶两平衡相(A相和B相)间的浓度比为一常数.两平衡相(A相和B相)的化学位相等:KA/BDi= XA i/ XBi式中: XA i:A相中溶质i的浓度; XBi:B相中溶质i的浓度; KD:能斯特分配系数(简单分配系数);5.复合分配系数:在一定温度压力下,两种溶质(i、J)在两平衡相(A和B相)间的分配为一常数.(Ki.jA/B= K(A/BDj)/ K(A/BDj);Ki.j:复合分配系数。KD:能斯特分配系数)6.总分配系数(D) :又称为岩石的分配系数,它是用来讨论微量元素在岩石(矿物集合体)和与之平衡的熔体之间的分配关系的.总分配系数(D)表示为: Di = KDi. X = KDiA/L . XiA + KDiB/L . XiB + 式中: XA 、XB .为岩石中的A 、B.相各自占的质量百分数; KDiA/L 、 KDiB/L.为A 、 B各相矿物和与之平衡的熔体之间的分配系数. 7.不相容元素(ICE):D小于1的元素, 随着结晶程度的增长而逐步在残余岩浆中富集.如Rb、Cs、Ba、Sr、Zr、Nb、Th、REE、P等8.相容元素(CE):D大于1的元素,倾向在矿物晶体中富集,并随这些矿物的晶出而逐步在残余岩浆中贫化.如Fe、Co、Ni、Cr、Mg等9.Eu 异常:Eu= EuEu* =EuN【(SmN+GdN)2 】反应Eu异常的程度,N为该元素球粒陨石标准化值,一般还原条件下Eu负异常。10.Ce 异常:Ce =CeCe*=CeN【(LaN+PrN)2】反应Ce异常的程度,N为该元素球粒陨石标准化值,一般氧化条件下Ce正异常。11.稀土元素球粒陨石标准化丰度:把样品中某稀土元素丰度与标准对应的球粒陨石各元素丰度相除,所得值为该元素的(如Eu的:EuN= Eu样Eu球。目的:消除由于奇偶规律所造成的REE丰度的锯齿状变化,使样品中个REE间的任何程度的分离都能清楚地显示出来,因为一般公认球粒陨石中轻重稀土元素无分异)第五章 同位素地球化学1放射性衰变:某种元素的原子核自发地放射出粒子(或射线)而转变成其它元素的原子核的过程叫放射性衰变。这类核素称为天然放射性同位素,共约64种,大多数A210。2.衰变:原子核自发地放射出粒子(即氦核42He)而转变成其它元素原子核的过程叫衰变。衰变的母核与子核原子序数相差2,质量数相差4。如,22688Ra 22286Rn + 42He3.-衰变:原子核自发地放射出-粒子(即电子)而转变成其它元素原子核的过程叫-衰变. 实质是母核内一个中子分裂为一个质子、一个电子( 即- 质点,被射出核外);如: 8737Rb 8738Sr + - ;4019K 4020Ca+ - ,-衰变的母核比子核原子序数减少1,质量数相等。4. r衰变:在原子核放射性衰变时, 伴随放射出r射线,即r衰变.r射线是波长很短的电磁波, r射线的一个量子即一个光子.当处于激发态(不稳定态)基态(稳定态)时放出r射线.5单衰变:射性母核经过一次衰变就变为稳定子核的衰变方式叫做单衰变 。6.电子捕获:原子核自发地从K层或L层电子轨道上吸取一个电子(多数为K层捕获),与一个质子结合变成一个中子。衰变产物核质量数不变,核电荷数减1。如:4019K+ e- 4018Ar; 13857La + e- 13856Ba7.衰变系列:从放射性同位素母核经过多个中间放射性子核直到最后稳定的子核这一个系列8. 衰变常数:卢瑟福认为:放射性元素在单位时间内衰变掉的原子数与现存的母核数成正比,其公式为:-N/t=N 式中即是衰变常数。9.半衰期:任一放射性核素衰变掉初始原子数一半所需的时间。10.分支衰变:一种母核同时有二种衰变方式叫做分支衰变。11.放射性衰变定律:设N0为放射性母体的初始原子数,衰变进行到t时未衰变母体的原子数为N,N=N0e(-t),表明放射性同位数随时间按指数规律而衰减,就是放射性衰变定律。12.核裂变:一个重核分裂为两个或几个中等质量的碎片,同时放出中子和能量的衰变叫重核裂变。分为自发裂变和诱发裂变。自然界只有235U和238U可发生重核裂变: 23592U 30Zn+65Tb13.BABI:地球锶同位素的演化大约在46亿年左右开始,那时原始锶的(87Sr/86Sr)比值为0.699(BABI),该固定值即为BABI。以玄武质无球粒陨石的(87Sr/86Sr)比值作为标准。14、地球Sr的演化:(图)地球形成后,因87Rb不断衰变成87Sr,而86Sr保持不变,故87Sr/86Sr比值不断增长。现今未亏损地幔的-比值介于0.704-0.706 (A1AA2线); 上地幔Rb亏损区的比值为0.702-0.704 (B线)。在地壳(C线):29亿年前地壳形成时初始-比值为0.7025。后因Rb的富集,大陆壳Rb/Sr比值大约是上地幔的十倍,且富含放射成因锶87Sr*,锶同位素沿着Rb/Sr=0.15的直线(C线)快速增长,现今大陆壳的-比值为0.719。在上地幔,因Rb/Sr比值不均一,锶同位素增长线是以BABI为起点的一组发散曲线,其中A1、A、A2线代表正常地幔演化范围,B线代表地幔Rb亏损区的演化线。地球形成初期,-比值较大,故-比值增长较快,Sr增长线A1AA2线斜率较大。在距今29亿年时,地幔分异出地壳C线, Rb元素随之向地壳迁移,至使上地幔的-比值增长减慢 (A1AA2线斜率变小)。15、等时线:一组同源的、同时形成的、经过锶均一化的、化学成分有差异的样品(岩石或矿物),自结晶以来保持封闭状态,它们具有相同的初始值(87Sr/86Sr)0,87Sr/86Sr的增长方程式为:(87Sr/86Sr)= (87Sr/86Sr)0 + (87Rb/86Sr)(et1)Y =b+xm该组岩石或矿物的数据投点都落在以(87Sr/86Sr)为Y轴和以(87Rb/86Sr)为X轴坐标系的一条直线上-即等时线上。16、放射性成因铅:岩石矿物形成后由铀钍衰变城铅(铅同位素约三分之一来自放射性成因铅)17、原始铅:地球形成时所存在的铅,其同位素组成相当于原生铅,同位素加上自元素形成到地球形成这段时间内,地球物质中所积累的放射成因铅.CDT的铅同位素是地球原始铅的公认数据:204Pb=1; 206Pb=9.307; 207Pb=10.294; 208Pb=29.476.18、异常铅:指多次体系开放,在一个以上U ThPb系统中演化的铅(多阶段铅.又分U铅、 J铅和Th铅).19、正常铅:指在一个U -Th Pb系统中演化的铅,又叫单阶段正常普通铅. (无U -Th 矿物); 其特征值为:= 238 U /204 Pb = 8.686 - 9.238;= 232Th/ 204Pb = 35 - 41;= 235 U / 204Pb = 0.063 - 0.067.20、普通铅:(狭)指岩石矿物形成时从周围介质中捕获的铅,即岩石矿物形成时就存在的铅.(也叫初始铅)地球形成时就存在的原始铅对地球而言也是普通铅.21、模式年龄:对于Rb/Sr等时线测年,(87Sr/86Sr)= (87Sr/86Sr)0 + (87Rb/86Sr)(et1)其中(87Sr/86Sr),(87Rb/86Sr)为样品实测,通过估算(87Sr/86Sr)0计算得来的T为模式年龄22、卡农三角:(图)分析1280个铅矿物同位素成分而得到的三角形图解,其中1100多个落到小三角形中,其余落于线两侧,小三角形称卡农三角形,表示普通铅的演化,外图是V、Th、J铅;208Pb=52%、206 Pb=19、 207Pb=2023、CHUR:球粒陨石均一库,代表地球或未分异的原始地幔值,现今地幔值:I(Nd)CHUR0 = (143Nd0144Nd) = 0.51264CHUR (147Sm/ 144Nd) CHUR0 = 0.196724、现代碳标准:美国NBC(国家标准局)提供的草酸标准SRM4990,即以1950年草酸放射性比度95%为现代碳标准比度:A0=13.560.07dpm/g.(每克含碳物质每分钟放射13.56次) 25、交换碳:地球上有3.2 1016吨碳分布在与大气CO2发生交换的各种含碳物质中,这种有交换关系的碳称为交换碳.交换碳约占地球总碳的 1/1000.26、死碳:地球上不与大气CO2发生交换的碳称为死碳,即交换碳之外所有的碳,例如各种碳酸盐岩和死亡动植物的残骸遗物等.27、现代碳:与现代大气CO2发生交换并处于平衡的各种含碳物质称为.28、稳定同位素:指无可测放射性的同位素。一部分是放射性同位素衰变的最终稳定产物;另一部分是自核合成以来就保持稳定的同位素。29、同位素分馏作用:轻稳定同位素( Z20 )的相对质量差较大(A / A10%),在地质作用中由于这种质量差所引起的同位素以不同的比值分配到两种物质或两相中的现象,称为同位素分馏作用。例如水蒸发时,水蒸气富集H216O,而残余水相中则相对富集D216O和H218O 。30、值:%o=(R样-R标)/ R标1000 =(R样/R标)-11000式中R 样 -为样品的重轻同位素比值; R标 -为标准的重轻同位素比值.例如: D=(D/H)样- (D/H)标 (D/H)标100031、同位素效应:由于同位素质量的微小差别,引起单质或化合物 在物理化学性质上发生变化的现象称为同位素效应.32、Smow:氢和氧的世界标准,为大西洋、太平洋和印度洋500-2000M深范围内采集的等体积海水混合而成,其同位素组成为:(D/H)=(155.760.05) 10-6 ;(18O/16O)=(2005.20 O.45)10-6 ;规定: D = 0.00 ;18O = 0.00 33、PDB:碳同位素世界标准,为美国南卡罗莱那州白垩系皮狄组地层的美洲拟箭石的鞘,碳酸钙样品(该样品已枯竭),同位素组成: (13C/12C)= 1123.73 10-5 ,(18O/16O)= 2067.110-6 规定: 13C = 0.00 ;18OSMOW = 30.86 34
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60947-8:2003/AMD1:2006 FR-D Amendment 1 - Low-voltage switchgear and controlgear - Part 8: Control units for built-in thermal protection (PTC) for rotating electrical ma
- 【正版授权】 IEC 60598-2-1:1979/AMD1:1987 EN-D Amendment 1 - Luminaires. Part 2: Particular requirements. Section One: Fixed general purpose luminaires
- 【正版授权】 IEC 61643-11:2025 EN-FR Low-voltage surge protective devices - Part 11: Surge protective devices connected to AC low-voltage power systems - Requirements and test methods
- 北汽汽修知识培训班课件
- 校园防欺凌安全知识培训课件
- 航空急救试题及答案
- 钎焊相关试题及答案
- 器械清洗试题及答案
- 信号工考试试题及答案
- 校园保洁安全知识培训课件
- 钱大妈合同协议书
- 育苗基地转让合同协议
- 静脉治疗的质量管理
- 脑-耳交互神经调控-全面剖析
- 矿用圆环链简介
- 水利工程安全事故案例分析
- 《新入职护士培训大纲》
- 《现代酒店管理与数字化运营》高职完整全套教学课件
- 叶类药材鉴定番泻叶讲解
- 药物制剂生产(高级)课件 5-11 清场管理
- 2025安徽安庆高新投资控股限公司二期招聘8人高频重点提升(共500题)附带答案详解
评论
0/150
提交评论