



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学下册位似教学设计【教学目标】:(一)知识与技能1进一步理解图形的位似概念,掌握位似图形的性质。2会利用作位似图形的方法把一个图形进行放大或缩小。3掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。(二)过程与方法1、经历位似图形性质的探索过程,进一步发展学生的探究、交流能力、以及动手、动脑、手脑和谐一致的习惯。2、利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识,进一步培养学生动手操作的良好习惯。(三)情感态度与价值观通过动手操作、探究与交流,发展学生的合情推理能力和初步的逻辑推理能力。【教学重点和难点】:本节教学的重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。【教学过程】: 一、创设情景,构建新知 1位似图形的概念下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.2、引导学生观察位似图形下列图形中,每个图中的四边形ABCD和四边形ABCD都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征? 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比. (1)五边形ABCDE与五边形ABCDE; (2)在平行四边形ABCD中,ABO与CDO(3)正方形ABCD与正方形ABCD.(4)等边三角形ABC与等边三角形ABC(5)反比例函数y(x0)的图像与y(x0)的图像(6)曲边三角形ABC与曲边三角形ABC (7)扇形ABC与扇形ABC,(B、A 、B在一条直线上,C、A 、C在一条直线上) (8)ABC与ADE(DEBC; AEDB)2如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比. 二、适当提高,应用新知 1、位似图形的性质 一般地,位似图形有以下性质: 位似图形上任意一对对应点到位似中心的距离之比等于位似比. 2、作位似图形 例:如图,请以坐标原点O为位似中心,作的位似图形,并把的边长放大3倍. 分析:根据位似图形上任意一对对应点到位似中心的距离之比等于位似比,我们只要连结位似中心O和的各顶点,并把线段延长(或反向延长)到原来的3倍,就得到所求作图形的各个顶点 3、直角坐标系中图形的位似变化与对应点坐标变化的规律 想一想:1四边形GCEF与四边形GCEF具有怎样的对称性? 2怎样运用像与原像对应点的坐标关系,画出以原点为位似中心的位似图形?以坐标原点为位似中心的位似变换有一下性质: 若原图形上点的坐标为(x,y),像与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(kx,ky). 练一练:1.如图,已知ABC和点O.以O为位似中心,求作ABC的位似图形,并把ABC的边长缩小到原来的一半. 2.如图,在直角坐标系中,ABC的各个坐标为A(-1,1),B(2,3),C(0,3)。现要以坐标原点0为位似中心,位似比为,作ABC的位似图形A/B/C/,则它的顶点A、B、C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通噪声屏障工程可行性研究报告(范文参考)
- 工业机器人升级项目可行性研究报告(范文模板)
- 新疆维吾尔自治区塔城地区塔城市2022-2023学年高二上学期期中英语 含解析
- 重庆市黔江中学2023-2024学年高一上学期10月月考语文卷 含解析
- 幼儿园乘公交车安全教育
- 郑州黄河护理职业学院《地下水水力学》2023-2024学年第二学期期末试卷
- 北京交通职业技术学院《黑白木刻版画基础》2023-2024学年第二学期期末试卷
- 绵阳飞行职业学院《商务大数据分析》2023-2024学年第二学期期末试卷
- 黎明职业大学《材料分析与测试技术实验》2023-2024学年第二学期期末试卷
- 大连航运职业技术学院《社会经济统计学》2023-2024学年第二学期期末试卷
- 自愿离婚协议书电子版
- 2025年广东省汕头市澄海区中考一模数学试题(含答案)
- 高考英语必背688个高频词汇清单
- 浙江开放大学2025年《社会保障学》形考任务1答案
- 统编版二年级语文下册第五单元自测卷(含答案)
- 北京市矢量地图-可改颜色
- 阶梯型独立基础(承台)配筋率验算
- 2010年某市人行天桥钢结构制作安装合同
- 新概念课堂笔记 第一册 Lesson 127-128
- 《汽车板材料物流配送服务技术规范》团体标准
- 四季酒店[Four Seasons]酒店培训手册(英)P48
评论
0/150
提交评论