《气体》专题一-变质量问题(教师版)_第1页
《气体》专题一-变质量问题(教师版)_第2页
《气体》专题一-变质量问题(教师版)_第3页
《气体》专题一-变质量问题(教师版)_第4页
《气体》专题一-变质量问题(教师版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 气体 专题一 变质量问题 对理想气体变质量问题 可根据不同情况用克拉珀龙方程 理想气体状态方程和气体 实验定律进行解答 方法一 化变质量为恒质量方法一 化变质量为恒质量 等效的方法等效的方法 在充气 抽气的问题中可以假设把充进或抽出的气体包含在气体变化的始末状态中 即用等效法把变质量问题转化为恒定质量的问题 方法二 应用密度方程方法二 应用密度方程 一定质量的气体 若体积发生变化 气体的密度也随之变化 由于气体密度 m V 故将气体体积代入状态方程并化简得 这就是气体状态发生变化 m V 22 2 11 1 T p T p 时的密度关系方程 此方程是由质量不变的条件推导出来的 但也适用于同一种气体的变质量问题 当温 度不变或压强不变时 由上式可以得到 和 这便是玻意耳定律的密 2 2 1 1 pp TT 211 度方程和盖 吕萨克定律的密度方程 方法三方法三 应用克拉珀龙方程应用克拉珀龙方程 其方程为 这个方程有 4 个变量 p 是指理想气体的压强 V 为理想气体的 体积 n 表示气体物质的量 而 T 则表示理想气体的热力学温度 还有一个常量 R 为理想 气体常数 R 8 31J mol K 0 082atm L mol K 方法四方法四 应用理想气体分态式方程应用理想气体分态式方程 若理想气体在状态变化过程中 质量为 m 的气体分成两个不同状态的部分 或由若干个不同状态的部分的同种气体的混合 则应用克拉珀龙方程 易推出 上式表示在总质量不变的前提下 同种气体进行分 合变态过程中各参量之间的关系 可谓之 分态式 状态方程 1 充气中的变质量问题 设想将充进容器内的气体用一根无形的弹性口袋收集起来 那么当我们取容器和口袋 内的全部气体为研究对象时 这些气体状态不管怎样变化 其质量总是不变的 这样 我 们就将变质量的问题转化成质量一定的问题了 例 1 一个篮球的容积是 用打气筒给篮球打气时 每次把Pa 的空气打进去2 5L 5 10 如果在打气前篮球里的空气压强也是Pa 那么打 30 次以后篮球内的空气压强 3 125cm 5 10 是多少 Pa 设在打气过程中气体温度不变 解析 由于每打一次气 总是把体积 相等质量 压强为的空气压到容积为V 0 p 2 a 0 V b 图 1 的容器中 所以打次气后 共打入压强为的气体的总体积为 因为打入的 0 Vn 0 pn V 体积的气体与原先容器里空气的状态相同 故以这两部分气体的整体为研究对象 取n V 打气前为初状态 压强为 体积为 打气后容器中气体的状态为末状态 压强 0 p 0 Vn V 为 体积为 n p 0 V 令为篮球的体积 为次所充气体的体积及篮球的体积之和 2 V 1 Vn 则 1 2 530 0 125VLL 由于整个过程中气体质量不变 温度不变 可用玻意耳定律求解 1122 pVpV 5 5 11 2 2 10 2 530 0 125 Pa2 5 10 Pa 2 5 pV p V 2 抽气中的变质量问题 用打气筒对容器抽气的的过程中 对每一次抽气而言 气体质量发生变化 其解决方 法同充气问题类似 假设把每次抽出的气体包含在气体变化的始末状态中 即用等效法把 变质量问题转化为恒定质量的问题 例 2 用容积为的活塞式抽气机对容积为的容器中的气体抽气 如图 1 所示 V 0 V 设容器中原来气体压强为 抽气过程中气体温度不变 求抽气机的活塞抽动次 0 pn 后 容器中剩余气体的压强为多大 n p 解析 如图是活塞抽气机示意图 当活塞下压 阀门 a 关闭 b 打开 抽气机气缸中 V 体积的气体排出 活塞第二次上提 即 抽第二次气 容器中气体压强降为 P2 根据玻意耳定律得 第一次抽气 0 010 p vp vv 0 10 0 v pp vv 第二次抽气 1 020 p vp vv 2 0 20 0 v pp vv 以此类推 第次抽气容器中气体压强降为 n 0 0 0 n n v pp vv 拓展 某容积为 20L 的氧气瓶里装有 30atm 的氧气 现把氧气分装到容积为 5L 的小 钢瓶中 使每个小钢瓶中氧气的压强为 4atm 如每个小钢瓶中原有氧气压强为 1atm 问最 多能分装多少瓶 设分装过程中无漏气 且温度不变 解析 设最多能分装 N 个小钢瓶 并选取氧气瓶中的氧气和 N 个小钢瓶中的氧气整体 为研究对象 按题设 分装前后温度 T 不变 分装前整体的状态 3 分装后整体的状态 由此有分类式 代入数据解得 取 34 瓶 说明 分装后 氧气瓶中剩余氧气的压强应大于或等于小钢瓶中氧气应达到的压强 即 但通常取 千万不能认为 因为通常情况下不可能将 氧气瓶中的氧气全部灌入小钢瓶中 例 3 开口的玻璃瓶内装有空气 当温度自升高到时 瓶内恰好失去质量为0 C 100 C 的空气 求瓶内原有空气质量多少克 1g 解析 瓶子开口 瓶内外压强相等 大气压认为是不变的 所以瓶内的空气变化可认 为是等压变化 设瓶内空气在时密度为 在时密度为 瓶内原来空气质0 C 1 100 C 1 量为 加热后失去空气质量为 由于对同一气体来说 故有mm m mm m 2 1 根据盖 吕萨克定律密度方程 TT 211 由 式 可得 2 21 273 1 3 73 373273 Tm mgg TT 3 巧选研究对象 两个相连的容器中的气体都发生了变化 对于每一个容器而言则属于变质量问题 但 是如果能巧妙的选取研究对象 就可以把这类变质量问题转化为定质量问题处理 例 4 如图 2 所示 两容器容积相同 用细长直导管相连 AB 二者均封入压强为 温度为的一定质量的理想气体 现使内气pTA 体温度升温至 稳定后容器的压强为多少 T A 解析 因为升温前后 容器内的气体都发生了变化 是AB 变质量问题 我们可以把变质量问题转化为定质量问题 我们把升温 前整个气体分为和两部分 如图 3 所示 以便升温后 让气体 VV VV 充满 A 容器 气体压缩进容器 于是由气态方程或气体实验定律有 VV VV B p VVP V TT p VVP V VV VV AB 图 2 4 联立上面连个方程解得 2T Pp TT 4 虚拟中间过程 通过研究对象的选取和物理过程的虚拟 把变质量问题转化为定质量问题 例 5 如图 4 所示的容器与由毛细管连接 开始时 ABC3 BA VV 都充有温度为 压强为的空气 现使的温度保持不变 对AB 0 T 0 pA 0 T 加热 使内气体压强变为 毛细管不传热 且体积不计 求中BB 0 2pB 的气体的温度 解析 对中气体加热时 中气体体积 压强 温度都要发生变化 BB 将有一部分气体从中进入中 进入中的气体温度又变为 虽然中气体温度不变 BAA 0 TA 但由于质量发生变化 压强也随着变化 增大 这样 两容器中的气体质量都发生pAB 了变化 似乎无法用气态方程或实验定律来解 那么能否通过巧妙的选取研究对象及一些 中间参量 把变质量问题转化为定质量问题处理呢 加热后平衡时两部分气体压强相等 均为 因此 可先以 中的气体作为研 0 2pAB 究对象 一定质量 假设保持温度不变 压强由增至 体积由 变为 0 T 0 p 0 2p AB VV V 再以此状态时体积为 的气体为研究对象 压强保持不变 温度由升 A VV 0 2p 0 T 到 体积由 变为 应用气体定律就可以求出来 T A VV 3 BA VV T 先以中气体为研究对象AB 初状态 末状态 0 p 0 T4 ABA VVV 0 2pTV 由波义耳定律 00 42 A pVp V 再以中剩余气体为研究对象B 初状态 2 末状态 0 p 0 T A VV 0 2pT3 BA VV 由盖 吕萨克定律得 由 得 0 3 AA VVV TT 0 3TT 5 气体混合问题 两个或两个以上容器的气体混合在一起的过程也是变质量气态变化问题 例 6 如图 2 所示 两个充有空气的容器 A B 以装有活塞栓的细管相连通 容器 A 浸在温度为 的恒温箱中 而容器 B 浸在 的恒温箱中 彼此由活塞栓隔 开 容器 A 的容积为 气体压强为 容 器 B 的容积为 气体压强为 求活塞 栓打开后 气体的稳定压强是多少 解析 设活塞

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论