




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
0 1变量 在整数规划问题中 有一类特殊的整数规划 不仅要求解为整数 而且要求只能取得0和1两个整数值 这类整数规划称之为0 1型整数规划 该类解称为0 1变量 第三节0 1型整数规划 一指派问题 由n项不同的工作或任务 需要n个人去完成 每人只能完成一项工作 由于每人的知识 能力 经验等不同 故各人完成不同任务所需的时间 或其它资源 不同 问应指派哪个人完成何项工作所消耗的总资源最少 指派问题的数学模型 引进0 1变量 表示安排第i个人完成第j项工作 表示不安排第i个人完成第j项工作 决策变量矩阵可表示为 用表示第i个人完成第j项工作所需的资源数 称之为效率系数 或价值系数 表示为 则指派问题的数学模型为 或1 注 指派问题是一种特殊的LP问题 是一种特殊的运输问题 目前认为最简洁的方法 匈牙利法 例某商业公司计划开办五家新商店 为了尽早建成营业 商业公司决定由5家建筑公司分别承建 已知建筑公司对新商店的建造报价 万元 为 商业公司应当对5家建筑公司怎样分配建筑任务 才能使总的建筑费用最少 这是一个标准的指派问题 若设0 1变量 当承建时 当不承建时 则问题的数学模型为 或1 如何分派工作 4 6 7 6 7 从而导出匈牙利解法的思想 1955年 由库恩 W W Kuhn 根据匈牙利数学家狄 考尼格 d konig 关于矩阵中独立零元素的定理发明的 匈牙利法的基本原理 定理1将效率矩阵的某一行 或某一列 的各个元素都减去同一个常数t t可正可负 得到新的矩阵 则以新矩阵为效率矩阵的指派问题与原指派问题的最优解相同 但其最优值比原最优值减少t 解 设效率矩阵C为 二匈牙利解法 记新指派问题的目标函数为 注意到 所以原式 因此有 推论若将指派问题的效率矩阵每一行及每一列分别减去各行各列的最小元素 则得到的新的指派问题与原指派问题有相同的最优解 注 当cij 0时 从第i行看 它表示第i人去干第j项工作效率 相对 最好 而从第j列来看 它表示第j项工作让第i人来干效率 相对 最高 问题是 能否找到位于不同行 不同列的n个0元素 定义在效率矩阵C中 有一组处于不同行 不同列的零元素 称为独立零元素组 此时其中每个元素称为独立零元素 例已知 则 是一个独立零元素组 分别称为独立零元素 也是一个独立零元素组 不是一个独立零元素组 定理效率矩阵C中独立零元素的最多个数等于能覆盖所有零元素的最少直线数 本定理由匈牙利数学家狄 考尼格证明的 例已知矩阵 例现有一个4 4的指派问题 其效率矩阵为 求解该指派问题 步骤1 变换系数矩阵 使得每行及每列至少产生一个零元素 2 4 9 7 4 2 步骤2 用圈0法确定中的独立0元素 若独立零元素个素有n个 则已得最优解 若独立零元素的个数 n 则转入步骤3 其余全为0 在只有一个0元素的行 或列 加圈 表示此人只能做该事 或此事只能由该人来做 每圈一个 0 同时把位于同列同行的其他零元素划去 表示此时已不能再由他人来做 或此人已不能做其它事 如此反复 直到矩阵中所有零元素都被圈去或划去为至 在遇到所有行和列中 零元素都不止一个时 可任选其中一个加圈 然后划去同行 同列其他未被标记的零元素 例 步骤3 若矩阵所有零元素都被标记的 但圈零的个数m n 作最少直线覆盖当前零元素 已知5家建筑公司承建5家商店系数矩阵 4 7 6 6 6 1 3 变换系数矩阵 确定独立零元素 作最少直线覆盖当前所有零元素 由于独立零元素个数4 5 对没有圈0的行打 在已打 的行中 对零元素所在的列打 在已打 的列中 对圈0元素所在的行打 重复 和 直到再也找不到可以打 的行或列为止 对没有打 的行画一横线 对已打 的列画一纵线 即得覆盖当前0元素的最少直线数目的集合 继续变换系数矩阵 以增加0元素 在未被直线覆盖的元素中找出一个最小的元素 对未被直 线覆盖的元素所在的行 或列 中各元素都减去这一元素 这样 在未被直线覆盖的元素中势必会出现0元素 但同时却又使已覆盖的元素中出现负元素 为了消除负元素 只要对它们所在的列 或行 中各元素都加上这一最小元素 返回 1 1 1 中已有5个独立0元素 故可确定指派问题的最优方案 其余全为0 也就是说 最优指派方案是 让A1承建B3 A2承建B2 让A3承建B1 让A4承建B4 让A5承建B5 这样安排能使总的建造费用最少 总的建造费用为7 9 6 6 6 34 万元 三非标准形式的指派问题 处理方法 化成标准形式 再按匈牙利方法求解 目标函数最大化指派问题 例有4名工人A1 A2 A3 A4分别操作4台机床B1 B2 B3 B4 每人操作每台机床的单位产量见下表 求产值最大的指派方案 人数和事数不等的指派问题 人少事多 添上虚拟的 人 这些虚拟的 人 做各事的费用系数可取0 理解为这些费用实际上不会发生 人数和事数不等的指派问题 人多事少 则添上一些虚拟的 事 这些虚拟的 事 被各人做的费用系数同样也取0 例5家建筑公司承建5家商店的指派问题 为了保证工程质量 经研究决定 舍弃建筑公司A4和A5 而让技术力量较强的建筑公司A1 A2和A3来承建 根据实际情况 可以允许每家建筑公司承建一家或两家商店 求使总费用最少的指派方案 3一个人可以做几件事的指派问题 由于每家建筑公司最多可承建两家新商店 因此 把每家建筑公司化作相同的两家建筑公司 和这样 系数矩阵变为 上面的系数矩阵有6行5列 为了使 人 和 事 的数目相同 引入一件虚事B6 使之成为标准指派问题的系数矩阵 再利用匈牙利法求解 列变换 圈0 1 1 1 再变换 打 覆盖 圈0 最优解 A1承建B1和B3 A2承建B2 A3承建B4和B5 总建筑费用为 最优解 总建筑费用为 万元 A1承建B1和B3 A2承建B2 A3承建B4和B5 例分配甲 乙 丙 丁四个人去完成A B C D E五项任务 每人完成各项任务的时间如下表 由于任务重 人数少 考虑 任务E必须完成 其它4项任务可选3项完成 但甲不能做A项工作 试分别确定最优分配方案 使完成任务的总时间最少 4某事不能由某个人做则可将相应的费用系数取作足够大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 炼钢原料加工工工艺创新考核试卷及答案
- 2025配偶双方关系确认赠予合同
- 2025技术学院教师聘请合同
- 定料合同范本5篇
- 办公区域出租合同(标准版)
- 材料垫资合同(标准版)
- 冒名借款合同(标准版)
- 加油站智能化系统施工技术措施
- 有关委托施工管理合同新3篇
- 债务保证担保合同范本模板6篇
- 环卫人员安全知识培训课件
- 4.《花之歌》教学设计-2024-2025学年统编版语文六年级上册
- 诉讼业务培训课件
- 2025青海黄南尖扎县公安局面向社会招聘警务辅助人员35人笔试参考题库附答案解析
- 12345热线培训课件
- 危险废弃物管理培训试题(附答案)
- 2025国投生物制造创新研究院有限公司招聘(31人)考试备考试题及答案解析
- 多彩的超轻泥教学课件
- 新学期,新征程+课件-2025-2026学年高二上学期开学第一课主题班会
- 梯笼安全验收表0001
- 全称量词命题与存在量词命题的否定 教案
评论
0/150
提交评论