已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第27炼 三角函数的值域与最值一、基础知识1、形如解析式的求解:详见“函数解析式的求解”一节,本节只列出所需用到的三角公式(1)降幂公式: (2) (3)两角和差的正余弦公式 (4)合角公式:,其中2、常见三角函数的值域类型:(1)形如的值域:使用换元法,设,根据的范围确定的范围,然后再利用三角函数图像或单位圆求出的三角函数值,进而得到值域例:求的值域解:设 当时, (2)形如的形式,即与的复合函数:通常先将解析式化简为同角同三角函数名的形式,然后将此三角函数视为一个整体,通过换元解析式转变为熟悉的函数,再求出值域即可例:求的值域解: 设 ,即的值域为 (3)含三角函数的分式,要根据分子分母的特点选择不同的方法,通常采用换元法或数形结合法进行处理(详见例5,例6)二、典型例题 例1:已知向量(1)求函数的单调递增区间(2)当时,求的取值范围解:(1) 单调递增区间为:(2)思路:由(1)可得:,从得到角的范围,进而求出的范围解:由(1)得: 小炼有话说:对于形如的形式,通常可先计算出的范围,再确定其三角函数值的范围例2:已知函数(1)求函数的最小正周期和图像的对称轴方程(2)求函数在区间的值域解:(1) 对称轴方程:(2)思路:将视为一个整体,先根据的范围求出的范围,再判断其正弦值的范围解: 例3:函数的最大值为_思路:解析式中的项种类过多,不利于化简与分析,所以考虑尽量转化为同一个角的某一个三角函数。观察可得次数较低,所以不利于转化,而均可以用进行表示,确定核心项为,解析式变形为,化简后为,当时, 答案:2小炼有话说:当解析式无法化成的形式时,要考虑是否是三角函数与其他函数的复合函数,进而要将某个三角函数作为核心变量,并将其余的三角函数用核心变量进行表示,再将核心变量进行换元求出值域即可例4:设函数,若,则函数的最小值是_思路:同例4考虑将解析式中的项统一,进而可将作为一个整体,通过换元来求值域。解:设,由可得:,从而 ,所以 所以最小值为 答案:0例5:函数的值域为_思路:可将视为研究对象,令,进而只需求的值域即可。解:令,可得 答案:小炼有话说:要注意在时自身带范围,即 例6:函数的值域为_思路:可变形为,且可视为与连线的斜率的取值范围,为单位圆上的一点,所以问题转化为直线与圆有公共点的的范围。所以,解得:或,所以 答案:小炼有话说:(1)对比例5和例6,尽管都是同一个角的分式值域,但是例5的三角函数名相同,所以可视为同一个量,利用换元求解,而例6的三角函数名不同,所以不能视为同一个量。要采取数形结合的方式。(2)本题还可利用方程与函数的关系求得值域,解法如下: 所以的取值范围(即值域)要能保证存在使得等式成立所以只需,解得:例7:设函数的值域是,则实数的取值范围是_思路:本题是已知值域求参数,所以考虑先带着计算角的范围为,可知,值域中最大值为1,所以说明经过,同时范围不能超过(否则最小值就要小于),从而可得,解得: 答案:例8:已知函数的最大值为,且,则 ( )A. B. C. 或 D. 或思路:观察到的项具备齐二次的特点,所以想到将解析式化为的形式,通过变形可得:,所以最大值为,即,再利用可得:,通过可解得:,进而求出的值为或解: 所以可得: 另一方面: 整理可得: ,解得:当时,当时, 的值为或例9:当时,函数的最小值为_思路一:考虑将所有项转变为关于的三角函数,即,从而想到分式与斜率的关系,可视为,结合可得为单位圆半圆上的点,通过数形结合可得:最小值为4思路二:考虑将所有项转变为关于的三角函数,则,观察到分子分母为齐二次式,从而上下同时除以,可得:,因为,所以,所以利用均值不等式可得:答案:4例10:求函数的值域思路:本题很难转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业办公场所转租合同范本
- 2025国企杂志招聘模拟试卷附答案详解
- 拼多多企业家介绍
- 护士妇科考试题及答案
- 稀缺资源合理利用工艺流程
- 电商平台运营营销推广流程方案
- 上海公安机关辅警招聘政策问答笔试备考题库及答案详解1套
- 2025年石家庄科技职业学院单招职业技能考试题库含答案详解(典型题)
- 2025年三农经济考题及答案解析
- 企业人力资源管理数据统计报表模板
- 妊娠期糖尿病课件
- 睡眠障碍课件
- 2024年第二届全国园林绿化职业技能竞赛(园林绿化工)决赛参考试题库(含答案)
- 2022年山东省职业院校技能大赛中职组“现代物流综合作业”赛项第二阶段第二部分运输作业优化竞赛试题
- 陈独秀生平事迹
- 非遗文化之漆扇介绍课件
- 食管癌免疫治疗的耐药机制与克服策略
- 2024年土地承包合作协议书
- 日语履历书志望动机范文
- 匹兹堡睡眠质量指数量表(pSQI)
- (完整版)兽医临床诊断学
评论
0/150
提交评论