




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
R语言中矩阵运算目录:矩阵的生成,矩阵的四则运算,矩阵的矩阵运算,矩阵的分解。1.矩阵的生成1_1将向量定义成数组 向量只有定义了维数向量(dim属性)后才能被看作是数组.比如: z=1:12; dim(z)=c(3,4);AA z; ,1 ,2 ,3 ,41, 1 4 7 102, 2 5 8 113, 3 6 9 12 注意:生成矩阵是按列排列的。1_2用array ( )函数构造多维数组 用法为:array(data=NA,dim=length(data),dimnames=NULL) 参数描述:data:是一个向量数据。 dim:是数组各维的长度,缺省时为原向量的长度。 dimname:是数组维的名字,缺省时为空。 例子: x=array(1:20,dim=c(4,5) x ,1 ,2 ,3 ,4 ,51, 1 5 9 13 172, 2 6 10 14 183, 3 7 11 15 194, 4 8 12 16 201_3用matrix()函数构造矩阵 函数matrix)是构造矩阵(二维数组)的函数,其构造形式为 matrix(data=NA,nrow=1,ncol=1,byrow=FALSE,dimnames=NULL) 其中data是一个向量数据,nrow是矩阵的行数,ncol是矩阵的列数.当byrow=TRUE时,生成矩阵的数据按行放置,缺省时相当于byrow=t,数据按列放置.dimname。是数组维的名字,缺省时为空.A 如构造一个3x5阶的矩阵 A=matrix(1:15,nrow=3,byrow=TRUE) A ,1 ,2 ,3 ,4 ,51, 1 2 3 4 52, 6 7 8 9 103, 11 12 13 14 152.矩阵的四则运算 可以对数组之间进行四则运算(+、一、*、/),这时进行的是数组对应元素的四则运算。一般情况下参加运算的矩阵或者数组的维数是相同的,但也可以计算不同维的,这是要将对应的元素补足。3.矩阵的矩阵运算3_1 运算 对于矩阵A,函数t(A)表示矩阵A的转置,如: A=matrix(1:6,nrow=2); A; ,1 ,2 ,31, 1 3 52, 2 4 6 t(A); ,1 ,21, 1 22, 3 43, 5 63_2 求方阵的行列式 函数det()是求矩阵行列式的值,如 det(matrix(1:4,ncol=2);1 -23_3 向量的内积 对于n维向量x,可以看成nxl阶矩阵或lxn阶矩阵。若x与y是相同维数的向量,则x%*%Y表示x与y作内积.例如,x=1:5; Y=2*1:5Zx%*%y ,11,110 函数crossprod()是内积运算函数(表示交叉乘积),crossprod(x,y)计算向量x与y的内积,即t(x) %*% y。crossprod(x)表示x与x的内积. 类似地,tcrossprod(x,y)表示x%*%t(Y),即x与y的外积,也称为叉积。tcrossprod(x)表示x与x作外积.如: x=1:5; y=2*1:5; crossprod(x); ,11, 55 crossprod(x,y); ,11, 110 tcrossprod(x); ,1 ,2 ,3 ,4 ,51, 1 2 3 4 52, 2 4 6 8 103, 3 6 9 12 154, 4 8 12 16 205, 5 10 15 20 25 tcrossprod(x,y); ,1 ,2 ,3 ,4 ,51, 2 4 6 8 102, 4 8 12 16 203, 6 12 18 24 304, 8 16 24 32 405, 10 20 30 40 503_4 向量的外积(叉积)设x和y是n维向量,则x%o%y表示x与y作外积.例如 x%o%y; ,1 ,2 ,3 ,4 ,51, 2 4 6 8 102, 4 8 12 16 203, 6 12 18 24 304, 8 16 24 32 405, 10 20 30 40 50 outer()是更为强大的外积运算函数,outer(x,y)计算向量二与y的外积,它等价于x %o%y函数。outer()的一般调用格式为 outer(x,y,fun=”*”) 其中x, y矩阵(或向量),fun是作外积运算函数,缺省值为乘法运算。函数outer()在绘制三维曲面时非常有用,它可生成一个x和y的网格。3_5 矩阵的乘法 设A和B为两个矩阵,通常意义下的矩阵乘法是通过A%*%B来完成,crossprod(A,B)表示的是t(A)%*%B,而tcrossprod(A,B)表示的是A%*%t(B)。最后我们通过运算知道x%*%A%*%x为二次型。例子: A=array(1:9,dim=(c(3,3) B=array(9:1,dim=(c(3,3) A%*%B; ,1 ,2 ,31, 90 54 182, 114 69 243, 138 84 30 crossprod(A,B)=t(A)%*%B; ,1 ,2 ,31, TRUE TRUE TRUE2, TRUE TRUE TRUE3, TRUE TRUE TRUE tcrossprod(A,B)=A%*%t(B); ,1 ,2 ,31, TRUE TRUE TRUE2, TRUE TRUE TRUE3, TRUE TRUE TRUE3_6 生成对角阵和矩阵取对角运算 函数diag()依赖于它的变量,当v是一个向量时,diag(v)表示以v的元素为对角线元素的对角阵.当M是一个矩阵时,则diag(M)表示的是取M对角线上的元素的向量.如 v=c(1,4,5); diag(v); ,1 ,2 ,31, 1 0 02, 0 4 03, 0 0 5 M=array(1:9,dim=c(3,3); diag(M);1 1 5 93_7 解线性方程组和求矩阵的逆矩阵 若求解线性方程组Ax=b,其命令形式为solve(A,b),求矩阵A的逆,其命令形式为solve(A).设矩阵A=t(array(c(1:8,10),dim=c(3,3),b A=t(array(c(1:8,10),dim=c(3,3); b=c(1,1,1); x=solve(A,b); x;1 -1.000000e+00 1.000000e+00 3.806634e-16 solve(A); ,1 ,2 ,31, -0.6666667 -1.333333 12, -0.6666667 3.666667 -23, 1.0000000 -2.000000 13_8 求矩阵的特征值与特征向量 函数eigen(Sm)是求对称矩阵Sm的特征值与特征向量,其命令形式为:ev=eigen(Sm),则ev存放着对称矩阵Sm特征值和特征向量,是由列表形式给出的,其中ev$values是Sm的特征值构成的向量,ev$vectors是Sm的特征向量构成的矩阵.如 Sm=crossprod(A,A); ev=eigen(Sm); ev;$values1 303.19533618 0.76590739 0.03875643$vectors ,1 ,2 ,31, -0.4646675 0.833286355 0.29952952, -0.5537546 -0.009499485 -0.83262583, -0.6909703 -0.552759994 0.46585024.矩阵的分解4_1 特征值分解(1).定义: 对N阶方阵A,x为标量,v是非零的N维列向量,且满足Ax=xv ,则称x为矩阵A的特征值,v 是相对应于x 的特征向量。特征值的全体成为A的谱。(2).在r中的实现:在r中利用函数eigen(A)来求矩阵的特征值和特征向量,具体的调用格式为:以矩阵A为例说明此问题 A=array(c(1,1,1,4,2,1,9,3,1),dim=c(3,3); D=eigen(A); D;$values1 5.8284271 -2.0000000 0.1715729$vectors ,1 ,2 ,31, -0.8597736 -9.486833e-01 0.53848202, -0.4346498 6.474883e-17 -0.78729383, -0.2680839 3.162278e-01 0.3003425(3).特征值分解的性质:我们知道当所求的的特征向量构成的矩阵可逆时会满足solve(vectors)%*%A%*%vectors=diag(values),下面进行验证。 solve(vectors)%*%A%*%vectors; ,1 ,2 ,31, 5.828427e+00 8.339683e-16 -1.285213e-152, 1.211325e-15 -2.000000e+00 2.704000e-163, -3.471971e-16 -1.607126e-16 1.715729e-01结果的精度还是比较高的。4_2 矩阵的奇异值分解 函数svd(A)是对矩阵A作奇异值分解,即A =U%*%D%*%t(V),其中U, V是正交阵,D为对角阵,也就是矩阵A的奇异值.svd(A)的返回值也是列表,svd(A)$d表示矩阵A的奇异值,即矩阵D的对角线上的元素.svd(A)$u对应的是正交阵U, svd(A) $v对应的是正交阵V.例如, A SVD=svd(A); SVD;$d1 17.4125052 0.8751614 0.1968665$u ,1 ,2 ,31, -0.2093373 0.96438514 0.16167622, -0.5038485 0.03532145 -0.86306963, -0.8380421 -0.26213299 0.4785099$v ,1 ,2 ,31, -0.4646675 -0.833286355 0.29952952, -0.5537546 0.009499485 -0.83262583, -0.6909703 0.552759994 0.4658502 attach(SVD);The following object(s) are masked from SVD (position 3): d, u, v u%*%diag(d)%*%t(v); ,1 ,2 ,31, 1 2 32, 4 5 63, 7 8 10 A; ,1 ,2 ,31, 1 2 32, 4 5 63, 7 8 104_3 qr分解 设A为m*n矩阵,如果存在m*m酉矩阵Q(即Q(H)Q=QQ(H)=I)和m*n阶梯形矩阵R,使得A=QR,那么此分解称为QR分解。QR分解在解决最小二乘问题、特征值计算等方面有着十分重要的作用。#建立矩阵 A=(array(c(1:12),dim=c(4,3); A; ,1 ,2 ,31, 1 5 92, 2 6 103, 3 7 114, 4 8 12#进行矩阵分解 QR=qr(A);QR$qr ,1 ,2 ,31, -5.4772256 -12.7801930 -2.008316e+012, 0.3651484 -3.2659863 -6.531973e+003, 0.5477226 -0.3781696 7.880925e-164, 0.7302967 -0.9124744 9.277920e-01$rank1 2$qraux1 1.182574 1.156135 1.373098$pivot1 1 2 3attr(,class)1 qr#提取Q,R并验证分解的正确性。 Q=qr.Q(QR); R=qr.R(QR); Q%*%R; ,1 ,2 ,31, 1 5 92, 2 6 103, 3 7 114, 4 8 124_4 Schur分解引言: 从特征值的分解中可以看出,特征值的分解是有条件的,如果特征向量不是线性无关的,那么对于一个矩阵来说便不能采用特征值分解的方法对矩阵进行分解。例如对于矩阵A=t(array(c(6,12,19,-9,-20,-33,4,9,15),dim=c(3,3)进行特征值分解有: A=t(array(c(6,12,19,-9,-20,-33,4,9,15),dim=c(3,3); A; ,1 ,2 ,31, 6 12 192, -9 -20 -333, 4 9 15 det(A);1 -1 W=eigen(A); W;$values1 1+0i 1-0i -1+0i$vectors ,1 ,2 ,31, -0.4082483-0i -0.4082483+0i -0.4740998+0i2, 0.8164966+0i 0.8164966+0i 0.8127426+0i3, -0.4082483+0i -0.4082483-0i -0.3386427+0i attach(W);The following object(s) are masked from W (position 3): values, vectors det(vectors);错误于determinant.matrix(x, logarithm = TRUE, .) : 目前还不能算复数矩阵的行列式 det(Re(vectors);1 -7.599489e-19 solve(vectors) ,1 ,2 ,31, 0.000000+78209959i 0.00000+78209959i -9.26965+78209959i2, 0.000000-78209959i 0.00000-78209959i -9.10153-78209959i3, 3.691206+ 0i 11.07362+ 0i 18.45603+ 0i 很明显vectors不是一个可逆矩阵此时进行特征值分辨这种方法便不可行,对于这种情况我们可以作Schur分解。描述: 对于任意的方针A,其Schur分解的形式为:A=USU(H),其中U是标准的正交矩阵(即满足UU(H)=I),S为上三角矩阵,并且对角线上的元素为A的特征值。由于此函数在包Matrix中,所以使用之前必须调入。并且注意matrix
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲醇合同协议书
- 物品清理协议书
- 清诜水箱协议书
- 宠物服饰合作协议书
- 工程劳动合同协议书
- 家庭委员终结协议书
- 禁止诽谤协议书
- 离职接触协议书
- 小学午睡安全协议书
- 电工揽活协议书
- 研究生高分论文写作(下篇)
- 二、问题解决型(指令性目标)QC成果案例
- 精益改善周五阶段
- 《AutoCAD机械绘图课件》课件-8-25-3 普通平键连接的画法
- 新生儿查对制度
- 简单机械主题单元教学设计
- 2023年广东省深圳市龙岗区数学六年级第二学期期末统考模拟试题含解析
- 高中政治2023高考复习选择性必修三《逻辑与思维》综合主观题专项练习(附参考答案)
- 实用俄语会话智慧树知到答案章节测试2023年山东交通学院
- 绿色建筑一星级专项施工方案
- 地理生物会考动员主题班会
评论
0/150
提交评论