



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.2 离散型随机变量的分布列【基础练习】1下列表格中,不是某个随机变量的分布列的是()【答案】c2.(2019年亳州期末)已知离散型随机变量x的分布列如图,则常数c为( )x01p9c2-c3-8ca.b.c.或d.【答案】a3(2016年晋城期末)设离散型随机变量的概率分布列为10123p则下列各式成立的是()ap(3)bp(1)cp(24)dp(0.5)0【答案】c4(2017年张家界月考)设随机变量x等可能取值1,2,3,n,如果p(x4)0.3,则n()a9b10c11d12【答案】b5设随机变量的分布列为p(k),k0,1,2,3,则c_.【答案】6若将一枚质地均匀的骰子先后抛掷两次,记出现向上的点数之差的绝对值为,则随机变量的分布列为_【答案】012345p7(2018年襄阳期末)某商店试销某种商品20天,获得如下数据:日销售量/件0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率(1)求当天商店不进货的概率;(2)记x为第二天开始营业时该商品的件数,求x的分布列【解析】(1)p(当天商店不进货)p(当天商品销售量为0件)p(当天商品销售量为1件).(2)由题意知x的可能取值为2,3.p(x2)p(当天商品销售量为1件),p(x3)p(当天商品销售量为0件)p(当天商品销售量为2件)p(当天商品销售量为3件).所以x的分布列为x23p8.(2019年辽宁期末)袋中装有10个除颜色外完全一样的黑球和白球,已知从袋中任意摸出2个球,至少得到1个白球的概率是.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为x,求随机变量x的分布列.【解析】(1)设白球的个数为x,则黑球的个数为10-x.从10个球中任意摸出2个球的情况有c102=45种,其中,至少有1个白球的情况有c102-c10-x2=45-(10-x)(9-x)种.所以至少得到1个白球的概率是=,解得x=5,即白球有5个.(2)袋中有10个球(含5个白球),从中任意摸出3个球,得到白球的个数为x,则x服从超几何分布,x的可能取值为0,1,2,3,p(x=k)=,k=0,1,2,3.则p(x=0)=,p(x=1)=,p(x=2)=,p(x=3)=.于是x的分布列为x0123p【能力提升】9袋中有4个红球3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,设得分为随机变量,则p(6)等于()a.b.c.d.【答案】d【解析】p(6)p(4)p(6).故选d.10若p(x2)1,p(x1)1,其中x1x2,则p(x1x2)等于()a(1)(1)b1()c1(1)d1(1)【答案】b【解析】由题意得p(x2),p(x1),p(x1x2)1 p(x2) p(x1)1()11随机变量的分布列为p(n)(n1,2,3,4),则p的值为_【答案】【解析】p(n)(n1,2,3,4),1,a.pp(1)p(2).12.(2019年江苏节选)在平面直角坐标系xoy中,设点集an=(0,0),(1,0),(2,0),(n,0),bn=(0,1),(n,1),cn=(0,2),(1,2),(2,2),(n,2),nn*.令mn=anbncn从集合mn中任取两个不同的点,用随机变量x表示它们之间的距离当n=1时,求x的分布列.【解析】当n=1时,a1=(0,0),(1,0),b1=(0,1),(1,1),c1=(0,2),(1,2),则mn中有6个点,从中任取两个不同的点,有c62=15种取法.如图所示,d0d1=e0e1=f0f1=d0e0=e0f0=d1e1=e1f1=1,d0e1=d1e0=e0f1=e1f0=,d0f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课件成果奖评职称的作用
- 新质生产力的对外开放战略
- 邮政营业测试题及答案
- 2024年海口经济学院招聘真题(行政管理岗)
- 双鸭山市辅警考试题库2025
- 2024年天柱县招聘社会化服务教师真题
- 2024年福建工程学院招聘真题(行政管理岗)
- 2025杭州劳动合同合同范本
- 福建漳州兵工装备有限公司招聘笔试题库2025
- 2025企业劳动合同范文
- 涉密文件日常管理办法
- 微信社交礼仪见面扫一扫时代25课件
- 药品批发企业《药品经营质量管理规范》
- 2025贵州黔西南州兴义市招聘事业单位教师40人备考试题及答案解析
- 2025甘肃省省直文博单位招聘事业编制工作人员26人笔试备考试题及答案解析
- 2025四川省公安厅警务辅助人员招聘(448人)笔试备考试题及答案解析
- 认识社会生活(教案)2025-2026学年统编版《道德与法治》八年级上册
- 一例跌倒护理不良事件分析
- 2025年社区网格员笔试考试题库及答案
- (2025年标准)返聘协议退休返聘协议书
- 走进焊接 课件 2.1百花齐放推陈出新-焊接方法
评论
0/150
提交评论