



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(2016-2017学年度第二学期)课题综合实践:探索图形学科数 学班级五(1)班课时1设计者陶家金一、教材简析和学情分析本部分是一个综合实践的内容,旨在通过探索表面涂色的小正方体的各种情况以及其中隐含的简单规律的过程,积累探索简单规律的经验,感悟数学思想方法,发展数学思维能力和空间观念。重在感知,轻在运用。因此这节课就要让学生的思维充分活跃起来。二、教学目标(知识与技能、过程与方法、情感态度与价值观) 知识与技能: 借助正方体涂色问题,通过实际操作、演示、想象、联想等形式发现小正方体涂色和位置的规律。过程与方法: 在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法和经验。情感态度与价值观: 在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神,和实事求是的科学态度。三、教学重难点 重点:找出小正方体涂色以及它所在的位置的规律。难点:找出小正方体涂色以及它所在的位置的规律。四、教法(理念)设计 情景演示,探究引导。五、教学资源准备 多媒体课件,小正方体。六、教学过程 一、复习导入1.正方体的面、棱、顶点各有什么特征?2.正方体的表面积和体积都需要许多计算才能得到,但是今天我们不去探讨这个,我们今天来进行一个不需要怎么计算,但是需要发挥你们想象力的小探究,好不好?二、新课讲授1.用棱长1cm的小正方体拼成棱长为2cm的大正方体后,把它们的表面分别涂上颜色,需要多少个小正方体?你觉得这些小正方体有什么特点?2.看来同学们都比较聪明,这个问题难不住大家,那么如果将这个大正方体拼得再大一点呢?课件演示:用棱长1cm的小正方体拼成棱长为3cm的的大正方体后,把它们的表面分别涂上颜色。(1)需要多少个小正方体?(课件演示需要9个小正方体)(2)这个时候这些小正方体,都有什么特点呢?(3)提出问题:其中三面、两面、一面涂色的小正方体各有多少个?请大家小组讨论交流。教师板书。3.如果拼成棱长为4cm、5cm、6cm的的大正方体后,需要多少个小正方体?其中三面、两面、一面涂色的小正方体各有多少个?(1)学生借助直观图独立思考,解决拼成棱长为4cm的大正方体的问题。(2)分类汇报交流。三面涂色:当学生说出有8个三面涂色的小正方体时,追问:哪8个?学生说出三面涂色的小正方体在原来大正方体的8个顶点的位置。两面涂色:可能有的学生是数出来的,也可能有的学生是用212算出来的。先让用计算方法的学生说一说“为什么用212”,从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会可以从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。引导比较“数”和“算”哪种更简便。一面涂色:着重交流明确可以由一面有4个一面涂色的小正方体,推算出6个面一共有46=24(个)一面涂色的小正方体还要追问4从哪来的棱长4,减去两个2个,得到一个边长是2的正方形。(3)学生独立解决棱长平均分成5份的问题。教师课件演示4.发现并总结规律。三面涂色的小正方体都在大正方体的顶点的位置。不论棱长是几,分割后三面涂色的小正方体的个数都是8个。两面涂色的小正方体都在大正方体的棱的位置,只要用每条棱中间两面涂 2色的小正方体的个数乘12,就得出两面涂色的小正方体的总个数。一面涂色的小正方体都在大正方体的面的位置,只要用每个面上一面涂色的小正方体的个数乘6,就得出一面涂色的小正方体的总个数。如果把棱长为n的大正方体涂色切割,三面涂色、两面涂色、一面涂色的小正方体各有多少个?5.利用经验自主探究没有涂色的小正方体与原来大正方体的关系。(1)引导学生自主提出新问题:除了知道三面、两面、一面涂色的小正方体的个数以外,你还想知道什么?(估计学生会提出:没有涂色的小正方体有多少个?)(2)学生讨论方法。估计大部分学生是用小正方体的总个数减去三面、两面、一面涂色的小正方体的总个数。(3)课件演示将三面、两面、一面涂色的小正方体剥离出去的过程,激发学生寻求更简便的方法。 (4)学生自主探究,并填写表格。 (5)展示汇报,从而总结出没有涂色的小正方体的个数是(n-2)个。三、课堂作业完成教材第44页第(2)题:数正方体的个数2层:1+(1+2)=4 或12+21=43层:1+(1+2)+(1+2+3)= 10或13+22+31=104层: 1+(1+2)+(1+2+3)+ (1+2+3+4)=20或14+23+32+41=20四、课堂小结1.提问:通过今天的学习你有什么收获,还有什么疑问?2.教师举例说明“分类计数探究规律”的数学思想和方法在生活中有着广泛的应用,让学生体会数学的应用价值。五、课后作业:完成练习册中本课时练习。七、板书设计 综合实践:探索图形正方体棱长三面涂色的块数两面涂色的块数一面涂色的块数没有涂色的块数2800038126148242485836542768489
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源行业大数据在能源企业竞争力评估中的应用报告
- 2025年城市轨道交通智慧运维系统在提升乘客满意度中的应用研究报告
- 2025年电池热失控防护技术市场潜力研究报告
- 平移与旋转获奖课件
- 工业互联网平台数据备份恢复策略与数据备份自动化研究报告
- 平潭港务站安全培训课件
- 工业区安全生产培训课件
- 2025年网络文学IP产业链开发与价值实现创新趋势探索报告
- 湖南长沙中考真题及答案
- 人教版高中语文选择性必修上册第二单元古代诗词散文试卷及答案
- GB 1903.50-2020食品安全国家标准食品营养强化剂胆钙化醇(维生素D3)
- GA/T 383-2014法庭科学DNA实验室检验规范
- 横河DCS-培训讲义课件
- 部编版三年级下册语文全册课件【完整版】
- 初中数学几何1000题专项训练(含详解分析)-最新
- 欧洲非常规的知识产权战略课件
- 外滩建筑介绍
- 青少年亲社会行为量表
- 你好,无废校园主题班会
- 中药煎服方法
- 研发支出辅助账汇总表
评论
0/150
提交评论