白光LED荧光粉概述_第1页
白光LED荧光粉概述_第2页
白光LED荧光粉概述_第3页
白光LED荧光粉概述_第4页
白光LED荧光粉概述_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 白光LED荧光粉概述 1 引言 在全球气候变化和能源紧张的背景下 节约能源 保护环境成为当今时代的主流 其中寻求高节能的照明光源已受到高度重视 白光发光二极管 Light EmittingDiode LED 具有发光效率高 能耗低 仅为白炽灯的1 8 寿命长 可达10 万h 无污染等诸 多优点 已广泛应用于城市景观照明 液晶显示背光源 室内外普通照明等多种照明 领域 1 20 被认为是替代白炽灯 荧光灯的新一代绿色照明光源 目前 获取白光LED 的主要有效途径有以下几种 1 蓝色LED 芯片与可被蓝光有 效激发的发黄光荧光粉结合组成白光LED 23 27 荧光粉吸收一部分蓝光 受激发发 射黄光 发射的黄光与剩余的蓝光混合 通过调控二者强度比 从而获得各种色温的 白光 2 采用发紫外光的LED 芯片和可被紫外光有效激发而发射红 绿 蓝三基色的 荧光粉 产生多色混合组成白光LED 制备白光发光二极管大多离不开稀土荧光粉 主要有黄色荧光粉 红色荧光粉及 三基色荧光粉等 因此获得化学性质稳定和性能优异的荧光粉成为实现白光LED 的关 键 本文综述了白光LED 用荧光粉的发光机理 制备方法 各种体系荧光粉及荧光粉 的性能表征做了较为详细的阐述 2 荧光粉的发光机理 发光是物质吸收的外部能量转换成光辐射的过程 是热辐射之外的一种辐射 持 续时间超过光的振动周期 10 11 s 发光材料大多数都是晶体材料 其发光性能与合 成过程中化合物 发光材料基质 晶格中产生的结构缺陷和杂质有关 这种局部不完整 破坏了晶体晶格的规则排列 从而形成了缺陷能级 在外部光源激发作用下 电子就 会在各种能级间跃迁 从而产生发光现象 目前 获取白光LED 的主要途径为光转换型 即利用波长为430 470 nm的InGaN 基蓝光LED 和可被蓝光有效激发的掺杂稀土的钇铝 石榴石Y3Al5O12 YAG 荧光材料结合组成白光发光材料 研究 28 发现 当YAG 的晶体结构中均匀掺入稀土元素时 其发光性能会有很大 的提高 以Ce 为例 由于其发光是由电子的5d 4f 跃迁引起的 跃迁能量受晶体环境 影响较大 掺入Ce 不但可显著提高YAG 荧光材料的光转化效率和光通量 降低材料色 温 还可通过调节发射光谱位置 适应不同白光色度要求 刘如熹等 29 证实了这一 理论 当YAG 中掺入稀土元素Ce 时 激发的黄光强度随Ce 含量增大而增加 Gd 取代 Y 后 发射主峰有红移趋势 Ga 取代Al 时 发射主峰有蓝移趋势 因而通过调节掺 杂元素的种类及含量就可使发射主峰在一定波长内发生变化 见图1 a 然而 此类荧光粉还存在着显色性较差 发光效率不够高 难以满足低色温照明 2 要求等缺点 相关研究 30 表明 BaYF3中Ce3 Eu2 间存在能量传递 当用263 nm的 紫外光激发时 Ce3 的4f 电子跃迁到高能级 然后经过晶格驰豫跃迁到低能级 将一 部分能量以非辐射方式传递给Eu2 使其发射增强 Ce3 将另一部分激发能向基态 2F7 2 和2F5 2 跃迁 出现2 个发射强度降低的重叠谱带 通过Ce3 Eu2 间能量传 递 可获得各种颜色的高效发光 KCaF3 中Ce3 Eu2 间的能量传递有类似途径 见 图1 b 因此进行多元素的掺杂为克服上述缺点提供了一条思路 图1 不同Gd 及Ga 取代量的 Y2 95 aCe0 05Gda Al5 bGab O12 荧光粉色度坐标图上 的色光位置 29 a 和Eu2 Ce3 在不同基质中的能级示意图 30 b 3 荧光粉的合成进展 材料的性能主要由材料的化学组分和微观结构决定 因此粉体的化学成分和制备 工艺成为决定荧光粉发光效率的重要因素 目前荧光粉的制备方法主要有固相法 燃 烧合成法 溶胶 凝胶法 溶剂热法 化学共沉淀法 喷雾热解法 等离子体法等 3 1 高温固相法 高温固相法是发展最早的合成工艺 也是最常用的荧光粉材料的制备工艺之一 该工艺相当成熟 在反应条件控制 还原剂使用 助熔剂选择 原料配制与混合等方 面都已日趋优化 该方法的制备过程 首先按一定配比称量满足纯度要求的原料 加 入适量助熔剂 充分混合均匀 装入坩埚 送入焙烧炉 在一定条件 温度 保护气氛 反应时间等 下进行烧结 得到产品 Glushkova 等 31 以微米级的Al2O3 和Y2O3 为原料 利用高温烧结方法 在 1600 高温下保温20 h 制备了YAG 粉体 但性能并不理想 随着对固相法反应机理 的进一步认识 通过采用纳米级原料 加入助熔剂等措施来降低烧结温度 32 33 研 究 34 35 表明 掺入少量硼和磷的化合物不仅可较大幅度降低烧结温度 还能在一定 程度上提高磷光材料的发光强度 与荧光材料相比 磷光材料受激发分子的电子在激 发态发生自旋反转 当它所处单重态的较低振动能级与激发三重态的较高能级重叠时 3 就会发生系间窜跃 到达激发三重态 经过振动驰豫达到最低振动能级 然后以辐射 形式发射光子跃迁到基态 磷光材料的发光的持续时间大于10 8 s 长于荧光材料 小 于10 8 s 张书生等 36 以Y2O3 4N Al OH 3 AR Ce2O3 4N 为原料 加入适量助 熔剂 于1400 大气气氛下焙烧数小时 得到中间产物 粉碎后 在1500 还原气氛 下 高温烧结数小时 制得高发光效率的YAG Ce3 黄色荧光粉 图2 显示加入合适的 助熔剂可提高荧光粉发射峰的强度 图2 不同助熔剂条件下YAG Ce 荧光粉的发射光谱 激发波长460 nm 36 高温固相法合成荧光粉的工艺已相当成熟 应用最普遍 但仍存在固有的缺点 烧结温度高 多在1300 以上 反应时间长 约6 8 h 产品冷却也需要相当长的时间 由于需经过长时间高温烧结 产物颗粒较大 密度高 硬度大 为满足实际需要 产 物必须进行球磨 既耗时又耗能 且在球磨过程中很可能出现表面缺陷 甚至会使其 发光性能大幅度下降 因此 人们在进一步完善高温固相法的同时 致力于寻求各种 温和 快速有效地软化学合成方法来取代它 3 2 燃烧合成法 燃烧合成法是指通过前驱物的燃烧合成材料的一种方法 最早由前苏联专家研制 并命名为自蔓延高温合成法 Self propagating High temperature Synthesis SHS 它是制备具有耐高温性能的无机化合物的一种方法 其过程为 当反应物达到放热反 应的点火温度时 以某种方法点燃 依靠原料燃烧放出来的热量 使体系保持高温状 态 合成过程持续进行 燃烧产物就是制备的材料 燃烧过程中发生的化学反应包括 溶液的燃烧和材料的分解 以甘氨酸为例 燃烧过程中的化学反应机理 37 为 3M NO3 3 5NH2CH2COOH 1 5M2O3 7N2 10CO2 12 5H2O 1 2M NO3 3 M2O3 6NO2 1 5O2 2 其中 M2O3 可表示为 Y3 8Al5 8 2O3 由上述各式可以看出 反应中产生了大量 4 气体 加之反应进行得较为迅速 产物来不及结晶就冷却下来 使前驱物呈现无定形 的多孔泡沫状 所得的前驱物经粉碎 煅烧后 最终制得荧光粉 石士考等 38 利用硝酸钇 硝酸铽 硝酸铝为原料 加入适量甘氨酸进行燃烧反 应 将所得前驱物经1450 高温煅烧制得了纯度较高 尺寸为0 6 1 4 m的YAG Tb 荧光粉 如图3 所示 图3 1450 下烧结所得YAG Tb 样品的SEM 照片和激发光谱 38 Mukherjee 等 39 将硝酸钇 硝酸铝溶液按比例混合后 加入甘氨酸获得凝胶 进行燃烧反应 制得蓬松状粉体 在1200 高温下保温4 h 得到粒径约为30 nm的YAG 荧光粉 随后掺杂稀土元素 发现由于Eu3 被还原为Eu2 Ce3 被氧化为Ce4 导致 Eu3 掺杂的YAG Ce 纳米荧光粉的发光强度大幅度降低 与传统高温固相法相比 燃烧 法制备荧光粉过程简单 升温迅速 产品颗粒小 粒径分布均匀 纯度较高 发光亮 度不易受破坏 且节省能源 节约成本 但存在反应过程剧烈难以控制 不易大规模 工业生产的缺点 3 3 溶剂 水 热法 溶剂 水 热合成法是指在一定温度 100 1000 和压强 1 100 MPa 下利用水或 溶剂中的物质发生化学反应进行的合成 其最大的优点是能得到其他方法无法制得的 物相或物种 使反应在相对温和的条件下进行 此外所得粉体的组分分布均匀 颗粒 大小和形状可控 分散性好 且不必高温煅烧和球磨 从而避免了许多复杂的后处理 工艺 溶剂热合成技术在原理上与水热法十分 相似 以有机溶剂代替水大大扩展了水热法的应用范围 是水热法的进一步发展 Inoue 等 40 利用溶剂热法制备了YAG 超细粉体 并对反应机理进行了探讨 指出在 溶剂热条件下溶剂较 易达到超临界或亚临界状态 即溶剂的压力和温度同时超过其临界点的状态 或溶剂 温度高于沸点但低于临界温度 以压力低于临界压力存在的流体状态 在此状态下 反应前驱物易被溶解且组分分布均匀 成核势垒低 因而可在低温低压下直接形成YAG 李 5 红等 41 以异丙醇溶剂为反应介质 采用溶剂热法在300 低温下保温10 h 得到了平 均粒径为200 nm的球形单分散YAG 粉体 如图4 所示 通过温度对反应进程的影响分 析了YAG 的形成机理 即在一定温度下 前驱体开始溶解脱水 随温度升高 浓度逐 渐增大 当达到过饱和溶液时开始析晶形成YAG 晶体 尽管溶剂 水 热法得到了广泛的应用 但也存在明显的缺点 不能应用于对水非 常敏感的化合物参与的反应 生产成本高 有机溶剂不易去除 对环境有污染 图4 YAG 粉体在不同温度下烧结10 h 后的XRD 谱和TEM 照片 41 3 4 溶胶 凝胶法 溶胶 凝胶法是20 世纪60 年代发展起来的一种制备无机材料的新工艺 已广泛应 用于制备纳米发光材料 溶胶 凝胶法分为两类 原料为金属醇盐溶液的醇盐溶胶 凝胶 法和原料为无机盐的水溶液溶胶 凝胶法 其基本原理为 金属醇盐或无机盐溶于溶剂 水或有机溶剂 形成均质溶液 溶质与溶剂发生水解或醇解反应形成溶胶 将溶胶经 过蒸发干燥转变成为凝胶 凝胶再经 干燥 烧结 最后制得所需无机化合物 与传统方法相比 溶胶 凝胶法具有明显的优 点 工艺过程温度低 使材料的制备过程易控制 节约能源 原料的混合可达到分子级 产物化学均匀性好 且可对产品的粒度进行有效控制 蒋洪川等 42 利用溶胶 凝胶法 以冰乙酸为催化剂制备了粒径约为1 m 的Y3Al5O12 Ce3 Tb3 稀土荧光粉 粉体最 大激发波长为273 nm 最大发射波长为545nm 色坐标为x 0 331 y 0 558 Kottaisamy 等 43 利用溶胶 凝胶法 在低温条件下制备了钆或镧共掺杂的 YAG Ce 荧光粉 并研究了共掺杂对粉体结构和发光性能的影响 结果表明 2 种元素 的掺杂导致了其荧光谱发生了不同程度的红移 钆或镧共掺杂的YAG Ce 荧光粉的色坐 标由原来的 0 229 0 182 分别增加到 0 262 0 243 0 295 0 282 更加接近标 准白光 0 333 0 333 见图5 溶胶 凝胶法的不足在于生产流程过长 成本高 所 制前驱体凝胶洗涤困难 干燥时易形成二次颗粒 在热处理时会引起粉体颗粒的硬团 聚 使最终制备的粉体分散性较差 且醇盐有较大毒性 对人体及环境都有危 6 害 图5 YAG Ce Gd 或YAG Ce La 及其与YAG Ce 混合后在蓝色LED 激发下得到的色坐标图 43 3 5 化学共沉淀法 共沉淀法是现阶段荧光粉合成中应用较多的一种方法 其主要过程为 在含有2 种或2 种以上金属离子的混合溶液中加入沉淀剂 OH CO32 C2O42 等 使原料溶 液中的阳离子形成各种形式的沉淀物 再经过滤 洗涤 干燥 烧结得到高纯超细粉 体材料 沉淀法克服了固相法中原料难混合均匀的缺点 实现了原料分子水平上的混 合 低温下直接制备粒度可控 高分散 化学均匀性好 纯度高的粉体 但颗粒的形 貌难以控制 张凯等 44 以硝酸铝 硝酸钇 硝酸铈为母盐 NH4HCO3 和NH3 H2O 为复合沉淀 剂 利用共沉淀法制备了前驱体 将其在1000 高温下煅烧 得到荧光粉 粉体形状近 球形 平均粒径为80 nm 研究发现 YAG Ce 荧光粉激发光谱不随铈浓度的增加而改 变 发射光谱发生红移 袁方利等 45 采用共沉淀法 以NH4HCO3 为沉淀剂 在 1200 下烧结得到纯度很高的YAG Ce 荧光粉 并发现随焙烧温度升高 发射光谱发生 红移 且发生峰强度越来越高 如图6 所示 7 图6 1300 烧结后得到的YAG Ce 粉体的SEM 照片和不同烧结温度下得到的YAG Ce 粉体的发射光谱 图 45 3 6 喷雾热解法 喷雾热解法是近年来新兴的合成无机功能材料的方法 该方法制备的发光材料一 般具有均匀的球形形貌 颗粒微细 组成均匀 有利于提高材料的发光强度 还可改 善发光材料的涂敷性能并提高发光显示的分辨率 喷雾热解法可实现产物粒子成分可 控 且操作过程简单 可连续生产 产量较大 成本低廉 其缺点是易产生空心结构 的球形颗粒 Kang 等 46 采用喷雾热解法制备了球形YAG Eu 粉体 并对其结晶度 结构 形 态及发光性能进行了研究 表明粉体在1000 下烧结就可完全转化为纯YAG 相 远低于 固相法的烧结温度 颗粒大小随溶液浓度升高而增大 通过对其发光性能的测试 得 到铕元素最合适的掺杂浓度1 3 at 并发现粉体的阴极发光性能随烧结温度的升高 而增强 黎学明等 47 采用喷雾干燥法获得前驱体 然后在活性炭提供的还原气氛中 1100 下烧结5 h 后 得到YAG Ce3 粉体 研究发现 加入柠檬酸有助于保持荧光粉 的形态 加入适量助熔剂NaF 能显著降低荧光粉的热解温度 他们将所制荧光粉进行 封装 测得其色标为x 0 3184 y 0 3419 色温为6165 K 相关光谱分析结果见图7 图7 YAG Ce 的激发光谱和发射光谱和白光的LED 发光光谱 47 4 白光LED荧光粉的分类 4 1 蓝光转换型荧光粉 4 1 1 蓝光激发的黄色荧光粉 1 YAG Ce3 采用蓝光LED 芯片加黄色 荧光粉的方法产生白光是基于补色混光的原理 一部分蓝光被荧光粉吸收 激发荧 光粉发射黄光 发射的黄光和剩余的蓝光混合得到白光 1996年7月29日日亚化学在日 本最早申报的白光LED 的发明专利就是在蓝光LED 芯片上涂敷YAG Ce3 黄色荧光粉 该黄粉主要成分是Y3A l5O12 C e3 YAG Ce3 目前商业用黄粉仍然主要是石 榴石结构的YAG C e3 通常YAG Ce3 以高温固相法在还原气氛中1600 e 下烧结 8 制得 样品在 460nm蓝光芯片激发下发射中心位于 540 nm宽带黄绿光 图1所示 9 真正实用化的YAG C e3 荧光粉还需要在里面掺杂其他稀土离子 如Tb3 Gd3 Eu3 Pr3 Sm3 等 以使荧光粉各方面性能得到改善 10 12 但是这种结 构的荧光粉中C e3 离子的发射光谱不具连续光谱特性 显色性较差 色温高 偏冷白 光 难以满足低色温照明的要求 且该荧光粉的众多专利长期被日本日亚公司所垄断 价格高昂 另外 除了YAG C e3 可供选择的黄色荧光粉的数量非常少 12 在YAG C e3 的基础上 2002 年 K umm er等 13 首先报道了一种新型的荧 光粉Tb3A l5O12 C e3 TAG Ce3 这种荧光粉与蓝光LED 组合可发出暖色调的 白光 Chiang等 14 Chen等 15 16 分别用不同方法制备了TAG C e3 发 现TAG C e3 0 03在460 nm 蓝光的激发下最大发射峰位于552 nm 随着Ce3 浓度 的增加 发射峰红移到红光区 图1 YAG Ce3 的激发和发射光谱 Kex 450 nm Kem 530 nm 图2 Ca A SiA lON Eu2 Ke x 460 nm Kem 590 nm 与YAG C e3 的激发与发射 光谱 2 氮 氧 化物体系 最近几年 稀土离子激活的氮 氧 化物受到很大关注 并得到迅猛发展 形成新 一类的稀土发光材料 其黄色荧光粉主要为Eu2 C e3 Y2 等激活的塞隆 S ia lon 类 X ie 等 17 制备了C a A S iA lON Eu2 荧光粉 在450 nm光激发 下发射590 nm 橙黄光 与蓝光芯片组合成白光LED后色温1900 3300 K 可实现暖白 光 其后经过改进 18 19 发现L i A S iA lON Eu2 中调整A l S i与O N 的 比例 荧光粉的主发射峰在563 586 nm 间可调 与芯片组装成白光LED 后 得到色 温3000 5200 K 暖白光 光效46 55 lm W 1 色坐标 0 340 0 348 但该荧 光粉制备条件苛刻 需在0 5MPa 的N2 气氛中 以1700 e 的高温烧结2 h Piao等 20 对比了Ca ASiA lON Eu2 与YAG Ce3 的发光性质 图2 所示 发现C a A S iA lON Eu2 有更宽的激发带 其发射光谱明显红移 3 硅酸盐体系 9 另一种有前途的黄色荧光粉体系是硅酸盐体系 2007年 日本Lum i tech公司已 开始销售用于白光LED 的SSE Sr3S iO5 Eu 荧光粉 该粉可被390 480 nm 的光激 发 发射580 nm 的黄光 产生类似白炽灯的暖白色 色温在2800 K 附近 Park等报 道了Sr2 SiO4 Eu2 21 和Sr3 SiO5 Eu2 22 蓝光激发下 两种样品分别 发射550和570 nm 黄光 与YAG Ce3 相比 两种样品制备的白光LED 发光效率更高 但显色指数不如YAG Ce3 L iu 和D ing 等 23 24 报道了两种氯硅酸盐体系 黄粉C a3 S iO4 C l2 Eu2 和C a5 S iO4 2C l2 Eu2 与氮 氧 化物相比 其制备条件温和 1000 e 还原气氛中烧数小时即得 4 1 2 蓝光激发的红色荧光粉 1 硫化物体系 基于蓝光LED系统所用的红色荧光粉主要采用硫化物为基质 如 C a1 x Srx S Eu2 25 系列 该类荧光粉激发与发射谱都很宽 是典型的Eu2 的4 f65dy 4f7 电子跃迁 通过改变Ca2 的掺杂量 可使发射峰在609 647 nm间移动 共掺 杂Er3 Tb3 C e3 等可增强红光发射 26 27 然而 硫化物很不稳定 容 易分解并产生对人体有害的气体 2 氮化物体系 氮化物荧光粉体系是一个庞大的家族 其中以氮化物红色荧光粉开发最早也最为 成熟 目前应用的红色氮化物荧光粉主要有两种 M2 S i5N8 Eu M C a Sr Ba 28 31 和C aA lS iN3 Eu 32 33 物理化学性能和发光性能都优于Eu2 激活的碱土硫化物 Sch lieper等 28 研究了氮化物的结构 结果表明 Sr2 Si5N8 属正交晶系 Pmn21空间群 a 571 0 2 b 682 2 2 c 934 1 2 pm 以 Ba取代Sr后晶胞常数增大 a 578 3 2 b 695 9 2 c 939 1 2 pm 样 品通过S iN4 四面体共用顶角形成三维空间网状结构 该体系中金属离子有两种位置 配位数分别为8和10 均与N 配位 以O取代N 并以A l取代Si以实现电荷平衡 可以制 得M S iA lON 基于这样的晶体结构 氮 氧 化物有如下优点 耐氧化 耐环境腐蚀 热稳定性高 分解温度高 强度大 摩擦系数低 耐磨擦 是一种优良的荧光粉用基 质材料 29 Piao 等 30 合成的S r2S i5N8 Eu2 荧光粉被蓝光芯片有效激发 后 发射宽带红光 半峰宽92 nm 能很好地与YAG C e3 配合 图3所示 掺杂浓度 低时 Eu2 倾向于取代10配位的Sr 位置 Sr N 键长为0 2928 7 nm 掺杂浓度升高 则倾向于取代8配位的Sr I 位置 Sr I N 键长为0 2865 6 nm 发射红移 3 Lu2C aMg2 S i G e 3O12 Ce3 Set lur等 34 合成了一种新型的石榴石结构红光材料 Lu2C aMg2 S i G e 3O12 C e3 样品470 nm 蓝光激发下宽带发射605 nm 红光 半峰宽约150 nm 该 10 样品与蓝光芯片组合后得到WLED 色温3500 K 显色指数76 光效20 5 lm W 1 但是 以上几种体系的红粉由于激发光谱很宽 大都从380 nm一直延伸到600 nm 不仅覆盖 了蓝光LED 的发射波长 而且也覆盖了大部分YAG Ce3 黄色荧光粉的发射波长 因 此 红色荧光粉不仅把蓝光LED的能量部分地转成了红光 450 nm Kem 620 nm and YAG Ce3 而且把YAG Ce3 发出的人眼最敏感的黄绿光也部分转成了红光 这样 总的LED 光通量下降 从而牺牲部分的光效 4 钨 钼酸盐体系 Eu3 激活的荧光粉其激发光谱是较窄的带状 峰值波长通常在395和460 nm附近 加入这种红色荧光粉能够避免上述红色荧光粉的弊病 Eu3 激活的钨 钼酸盐体系即 是这类在近紫外和蓝光下均能激发 产生红光发射的荧光粉 近年来也是研究较多的 体系 35 40 W ang等 35 36 通过研究一系列的钼酸盐体系 发现该类荧光 粉的发射波长很理想 处在人眼对红光光谱最敏感的617 nm 附近 我们也探讨了Eu3 离子激活的四钨酸盐C a9Gd2W4O24 Sr9Gd2W4O24的荧光特性 39 40 发现此 类多钨酸盐利用Eu3 离子的较高4f能级激发 可以获得色纯度很高的红光发射 且 该体系465 nm 处的激发光谱强度高于395 nm 有利于该类荧光粉在蓝光芯片中的应用 图4所示 但钨 钼酸系列荧光粉的激发谱均为半波宽较窄的线状谱 存在与芯片匹 配的问题 另外 荧光粉的发射谱也为半波宽较窄的线状谱 积分强度较小 从而影 响LED的发光强度 4 1 3 蓝光激发的绿色荧光粉 1 硫代镓酸盐体系 绿色荧光粉目前主要采用的是硫代镓酸盐体系 如SrGa2 S4 Eu2 在470 nm 激 发下发射535 nm 绿光 41 Do 等 42 发现 以Ca2 逐步取代Sr2 后 发射光 谱由535 nm红移至555 nm 并使用这两种荧光粉与455 nm蓝光芯片制作了绿光LED 然 而该荧光粉需在有毒的H2 S气氛中合成 对人体和环境都有一定损害 Sr9Gd2W4O24 EuSastry等 43 利用固相RMR 方法 Solid state RapidMe tathesis React ion 在较低温度下 无需使用H2S气体制备了Sr1 x EuxGa2S4 Jiang 等 44 不使用 H2S气体也制备了类球形 粒径分布均匀 发光效率高的SrG a2 S4 Eu2 荧光粉 另 外 Guo Zhang等 45 46 也报道了一些含硫化合物的稀土荧光粉 此类荧光粉的 缺点是不太稳定 11 图3 Sr2S i5N8 Eu2 Kex 450nm Kem 620nm 与YAG Ce3 的激发与发射光谱图4 Sr9Gd2W4O24 Eu的激发光谱 左 和发射光 谱 右 2 氮 氧 化物体系 氮 氧 化物绿色荧光粉目前主要有Eu2 Ce3 Yb2 等稀土离子激活的塞隆 S ialon 类和MSiO2N2 两大类 47 52 X ie等 47 在0 5MPa的N2 气氛中1700 e 烧2 h制得了 M1 2x v Ybx m 2 S i12 m n A lm n OnN16 n M Ca L i Mg Y x 0 002 0 1 0 5 m 2n 3 5 以O取代N 并以A l取代S i实现 电荷平衡 当M C a x 0 005 m 2n 2 时 Ca0 995 A Si9A l3ON15 0 005Yb2 发光最强 样品呈现多峰宽带激发 445 nm激发下 宽带发射549 nm绿光 能较好地配合蓝光芯片使用 B S iA lON Eu2 在450 nm 激发下发射535 nm 绿光 48 与SrGa2S4 体系相比 该样品对环境友好得多 只是合成条件较苛刻 张梅等 49 采用高温固相法合成了黄绿色Sr1 yEuy S i2O2 zN2 2z 3荧光材料 进行了 光学性质表征并探索了其在LED 上的应用 其合成条件相对温和 3 硅酸盐体系 碱土金属正硅酸盐基质是一类适合于白光LED的材料 50 52 Eu2 离子由 于与碱土金属离子半径相似而容易进入晶格格位 且通过不同碱土金属离子的掺杂 Eu2 能量最低的5d电子组态可以出现较大的晶场劈裂 因而产生较宽的激发带 其激 发带可从紫外区延伸至 500 nm的蓝光区 同时实现不同的发光颜色 53 Ba Sr 2 SiO4 Eu2 54 通过调节Ba Sr的比例 能被370 470 nm 的光有效激发 产生绿光发射 Chen等 55 报道了 Ba1 1 Sr0 7 Eu0 2 S iO4 荧光粉 该荧 光粉被460 nm的蓝光激发 产生528 nm的绿光发射 图5所示 但是该荧光粉的温度特 性不佳 其发光强度在150和300 e 时 分别只有25 e 的77 和9 因此 此类硅酸盐 基质荧光粉还需解决温度特性的问题 12 图5 Ba1 1 Sr0 7 Eu0 2 S iO4的激发 和发射光谱 图6 Ba2 S iO4 Eu2 的激发和发射光谱 4 2 近紫外光转换型荧光粉 用于蓝光LED芯片的荧光粉的吸收峰要求位于420 470 nm 能够满足这一要求的 荧光材料相对较少 探找有一定的难度 此外 蓝光芯片性能不够稳定 当驱动电流 增大时 发射峰位置蓝移 同时蓝光发射强度的增加速度快于黄光 导致整体发射的白 光性能不稳定 显色指数下降 甚至偏离白光区域 近紫外光LED 芯片 由于激发光 源的能量更高 能被有效激发的荧光粉种类极大增加 可供选择的高效荧光粉的种类 更丰富 理论上可获得光效高 显色指数高以及各种相关色温的白光LED 因此紫光 LED 三基色荧光粉制备白光LED 的方式被寄予厚望 研制适用于紫光芯片的红 绿 蓝荧光粉成为当前的热点领域 4 2 1 紫光激发的红色荧光粉 1 Y2O2 S Eu3 Y2O3 Eu3 是一种使用得非常广泛的荧光灯用红粉 以S取代一个O 后 由于Eu S键的共价性强于Eu O 键的共价性 其电荷迁移带红移 有利于该荧光粉在 395 nm 处的紫光激发 35 目前Y2O2 S Eu3 是应用于白光LED 领域主要的红粉 56 57 Yang 等 58 采用燃烧法制备Y2O2 S Eu3 可将反应温度降低到450 e 使用 助熔剂则能有效改善样品形貌 提高发光强度 Chou等 59 以N a2 CO3 BK2CO3 BL i2CO3 BL i3PO4 4B1B4B1 为助熔剂控制粒径 1150 e 烧2 h合成了Y2O2 S Eu3 得到5 10 Lm近球形颗粒 Park等 60 使用不同的助熔剂在1100 e 烧3 h制得Y2O2 S Eu3 B i3 作者发现2 08 BaC l2 2H2O和0 43 H3 BO3 联合用作助熔剂 时能明显改变样品形貌 荧光粉粒径长大至400 800 nm 形状规则 不团聚 发光强 度为不使用助熔剂时的614倍 2 氮化物体系 氮化物荧光粉由于激发光谱的激发范围涵盖紫外 近紫外 蓝光甚至绿光 不仅适 合于蓝色芯片白光LED 的应用 也广泛地应用于紫光芯片的白光LED 前面提到的M2 S 13 i5N8 Eu M Ca Sr Ba 28 31 和CaA lS iN3 Eu 32 33 红粉也被应用 于近紫外激发的红色荧光粉 其物理化学性能和发光性能都优于Y2O2 S Eu3 3 钨 钼酸盐体系 钨 钼酸盐掺Eu3 体系在近紫外也有很好的激发 产生色纯度很高的红光发射 35 40 61 64 W ang 等 61 62 采用固相法合成了A MoO4 2 Eu A L i Na K 及Na5 MoO4 4 Eu 此类化合物在 395 nm和 465 nm 的激发下均有较强的 红光发色 Neeraj等 63 将N aHCO3 Ln2O3 M Y Gd WO3 H2MoO4 和Eu2O3 混合后在500 e 灼烧48 h 重新研磨后再在800 e 灼烧60 h 制得N aLn WO4 2 x M oO4 x Eu3 M Y Gd 系列荧光粉 NaY WO4 2 x MoO4 x Eu3 在 393和463 nm 附近有两个线状激发峰 其激发光谱与LED 的发射光谱非常匹配 是理 想的白光LED用红色荧光粉 Chiu 等 64 研究了M o W 比值对LiEu WO4 2 x MoO4 x 发光强度的影响 发现当Mo W 为2 0时 即L iEu MoO4 2 的发光最强 认为这是由于WO2 4 和MoO2 4 基质的不同导致二者中两个Eu3 之间的距离有所差 别 WO2 4 中的平均距离为0 39 1 nm MoO2 4 中的平均距离为01386 6 nm 导致不同基质的发射强度不同 并在研究L i Na K 对Eu3 激发的钨 钼酸盐的发光 强度影响中得出相同的结论 由于L i的半径最小 两个Eu3 之间的距离最小 发光 强度最高 而K则最低 此外Sr2 La8 G eO4 6O2 Eu3 65 体系亦观察到了红光发射 4 2 2 紫光激发的绿色荧光粉 1 ZnS Cu A l3 ZnS Cu A l3 66 67 是目前应用最多的近紫外激发的绿色荧光粉 在 530 nm 处有较强的绿光发射 有关该荧光粉的专利也很多 但由于是硫化物 在稳定 性和环保方面有所欠缺 2 硅酸盐体系 M2S iO4 Eu2 M2 C a2 Sr2 Ba2 体系是研究很多的另一种绿色荧 光粉 其中 M 存在三种不同的晶格位 9配位的M 和M 位置 M O 键长 较大 6 配位的M 位置 键长较小 Zhang 等 68 以H3BO3为助熔剂在弱还原 气氛中1300 e 烧6 h制备了Ba2 S iO4 Eu2 荧光粉 样品的激发谱较宽 覆盖了近 紫外芯片的发射区域 在近紫外光的激发下发射505 nm 绿光 如图6 所示 K im 等 69 研究了M2 S iO4 Eu2 M Ca S r Ba 体系发射光谱随环高到400 K 时 在 370 nm 光激发下 M Sr时 发射红移 M C a或Ba 时 发射蓝移 氯硅酸盐体系 70 72 也有较好的绿光发射 3 氮 氧 化物体系 氮 氧 化物体系用于近紫外激发的绿色荧光粉发射强度高 在该领域的应用前景 看好 47 52 SrS i2O2N2 Eu2 50 氮氧化物绿色荧光体的发射光谱是一宽 14 带 发射峰位于530 nm 220 500 nm光均可有效激发 其光谱性质均为Eu2 的4f7 4f6 5d 跃迁 这种新的氮氧化物绿色荧光体的两个重要特点是 发光的量子效率高 猝灭温度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论