




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题复习十 归纳猜想型问题归纳猜想型问题对考生的观察分析能力要求较高,经常以填空选择等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。其中蕴含着“特殊一般特殊”的常用模式。解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。【范例讲析】:例1:观察下面的单项式:a,-2a2,4a3,-8a4,根据你发现的规律,第8个式子是 -128a8例2:用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是 3n+4例3:如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8后,那么所描的第2013个点在射线 OC上例4:如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(-1,0)一个电动玩具从坐标原点0出发,第一次跳跃到点P1使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;照此规律重复下去,则点P2013的坐标为 (0,-2)例5:如图,OP=1,过P作PP1OP,得OP1=;再过P1作P1P2OP1且P1P2=1,得OP2=;又过P2作P2P3OP2且P2P3=1,得OP3=2;依此法继续作下去,得OP2012= 例6:已知直线y=(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+S2012= 例7:正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OEMN于点E,过点B作BFMN于点F(1)如图1,当O、B两点均在直线MN上方时,线段AF、BF、OE之间有怎样的关系?并进行证明。(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想。 【典型习题】一、选择题1给定一列按规律排列的数: ,则这列数的第6个数是()A B C D 2下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,则第(10)个图形的面积为()A196cm2B200cm2C216cm2D256cm23如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,依此规律,第11个图案需()根火柴A156B157C158D1594下列图形都是由同样大小的棋子按一定的规律组成,其中第个图形有1棵棋子,第个图形一共有6棵棋子,第个图形一共有16棵棋子,则第个图形中棋子的颗数为()A51B70C76D815如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A(1,4)B(5,0)C(6,4)D(8,3)6如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;依此类推,则平行四边形AO4C5B的面积为()A cm2B cm2C cm2D cm2二填空题7有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212请观察它们的构成规律,用你发现的规律写出第8个等式为 。 8一组“穿心箭”按如下规律排列,照此规律,画出2013支“穿心箭”是 。9观察下列各数,它们是按一定规律排列的,则第n个数是 ,10下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 个实心圆11为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为 。12如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;按这样的规律下去,第6幅图中有 个正方形13.已知 ,依据上述规律,计算 +的结果为 (写成一个分数的形式)。 14如图是三种化合物的结构式及分子式请按其规律,写出后面第2013种化合物的分子式 15如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么点A4n+1(n为自然数)的坐标为 (用n表示)16观察下列运算过程:S=1+3+32+33+32012+32013 , 3得3S=3+32+33+32013+32014 , -得2S=32014-1,S= 运用上面计算方法计算:1+5+52+53+52013= 17把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90,按上述方法经过4次旋转后,顶点O经过的总路程为 ,经过61次旋转后,顶点O经过的总路程为 解:如图,为了便于标注字母,且位置更清晰,每次旋转后不防向右移动一点,专题复习十一 动态几何型题 动态几何问题是近年来中考数学试题的热点题型之一,常以压轴题型出现。这类问题主要是集中代数、几何、三角、函数知识于一体,综合性较强。常用到的解题工具有方程的有关理论,三角函数的知识和几何的有关定理。【范例讲析】:例:如图,长方形ABCD中,AD=8cm,CD=4cm. 若点P是边AD上的一个动点,当P在什么位置时PA=PC? DCAB在中,当点P在点P时,有,Q是AB边上的一个动点,若时, 与垂直吗?为什么?【典型例题】:1.如图,平面直角坐标系中,四边形为矩形,点的坐标分别为,动点分别从同时出发以每秒1个单位的速度运动其中,点沿向终点运动,点沿向终点运动过点作,交于,连结,已知动点运动了秒(1)点的坐标为( , )(用含的代数式表示);(2)试求面积的表达式,并求出面积的最大值及相应的值;(3)当为何值时,是一个等腰三角形?简要说明理由BAMPCO2. 如图,在梯形中,梯形的高为动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为(秒)(1)当时,求的值;(2)试探究:为何值时,为等腰三角形3. 已知如图,在梯形中,点是的中点,是等边三角形(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变设求与的函数关系式;ADCBPMQ60(3)在(2)中,当取最小值时,判断的形状,并说明理由专题复习之十二 几何综合题几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有13个问题,解答这种题一般用分析综合法【范例讲析】:1. 如图,已知AB是O的直径,直线与O 相切于点C,过点A作直线的垂线,垂足为点D,连结AC .(1)求证:AC平分DAB; (2)若AD=3,AC=,求直径AB的长。【典型例题】1.已知:如图,AB为O的直径,O过AC的中点D,DEBC于点E(1)求证:DE为O的切线;(2)若DE=2,tanC=,求O的直径2.如图,已知O的两条弦AC、BD相交于点Q,OABD(1)求证:AB2=AQAC:(2)若过点C作O的切线交DB的延长线于点P,求证:PC=PQ3.如图,等腰三角形ABC中,ACBC10,AB12,以BC为直径作O交AB于点D,交AC于点G,DFAC,垂足为F,交CB的延长线于点E(1)求证:直线EF是O的切线;(2)求sinE的值4.如图(1),在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年疼痛科患者的评估与镇痛模拟考试卷答案及解析
- 2025四川内江高新区建设局(拆迁办)派遣制招聘笔试历年参考题库及答案
- 衡水金卷四省(四川云南)高三联考9月联考化学(含答案)
- 党务社工考试写作真题及答案
- 储煤场安全培训课件
- 精英驾校学员培训合同协议书(含夜间训练)
- 郝环离婚协议中共同财产评估及分配协议范本
- 智能环保项目研发合作终止及污染治理协议
- 5G通信网络建设项目委托代建与售后服务协议
- 主题酒吧委托特色餐饮服务与经营管理合同
- 职级职等管理办法
- 互联网金融(第二版)课件 第1章 导论
- 锁骨骨折病人护理查房
- 建筑垃圾资源化处理方案
- 电解质紊乱患者的护理
- 抚州辅警考试试题及答案
- 2025年河南高考地理真题(答案版)
- 《牙体牙髓病学》教学大纲
- 制造型企业销售管理制度
- 非标自动化公司技术部管理制度
- 应用型高校产教融合:模式构建与实践路径探索
评论
0/150
提交评论