



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
确定圆的条件 教学设计 教学设计思路:师生共同探索,经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论掌握过不在同一条直线上的三个点作圆的方法了解三角形的外接圆、三角形的外心等概念教学目标教学知识点了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念能力训练要求1经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力2通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略情感与价值观要求1形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神2学会与人合作,并能与他人交流思维的过程和结果教学重点1经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论特别是定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” 2掌握过不在同一条直线上的三个点作圆的方法3了解三角形的外接圆、三角形的外心等概念教学难点分析作圆的方法,实质是设法找圆心过已知点作圆的问题,就是对圆心和半径的探讨教学方法教师指导学生自主探索交流法教学过程一、类比联想,提出问题1提问:确定一条直线的条件是什么?学生回答:两点确定一条直线2我们知道,两点确定一条直线,那么,对于圆来讲,是否也存在由几点确定一个圆的问题呢?提出问题,让学生思考,并进一步讨论:(1)经过一个点A,是否可以作圆?如果能作,可以作几个?学生讨论回答后,请一名学生上黑板作图(如图),并得出:经过一个点A作圆很容易,只要以点A外的任意一点为圆心,以这一点与点A的距离为半径就可以作出,这样的圆有无数多个(2)经过两个点A,B如何作圆呢?能作几个?同样,在学生讨论回答的基础上,再让一名学生上黑板作图,并得出:经过两个点A,B作圆,只要以与点A,B距离相等的点为圆心,即以线段AB的垂直平分线上任意一点为圆心,以这一点与点A或点B的距离为半径就可以作出,这样的圆也有无数多个.(如图)(以上两点由于有前边两节课的知识作铺垫,学生比较容易作出)二、动手实践,发现新知下面来研究,经过三个已知点作圆又会怎么样呢?仍然让学生讨论,自己动手作图,这时,学生会发现:由于两点确定一条直线,因此三个点就有在同一直线上的三点和不在同一直线上的三个点两种情况(1)作圆,使它经过已知点A,你能作出几个这样的圆?(2)作圆,使它经过已知点A、B你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上)你是如何作的?你能作出几个这样的圆?师根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答生(1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆由于圆心是任意的因此这样的圆有无数个如图(1)(2)已知点A、B都在圆上,它们到圆心的距离都等于半径因此圆心到A、B的距离相等根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径圆就确定下来了由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个如图(2)(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆师大家的分析很有道理,究竟应该怎样找圆心呢?3过不在同一条直线上的三点作圆作法图示1连结AB、BC2分别作AB、BC的垂直平分线DE和FG,DE和FG相交于点O3以O为圆心,OA为半径作圆O就是所要求作的圆他作的圆符合要求吗?与同伴交流生符合要求因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等ED与FG的满足条件提问:过如下三点能不能做圆? 为什么?ABC师由上可知,过已知一点可作无数个圆过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆不在同一直线上的三个点确定一个圆注意: “不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” 3现在我们回过头来再看看,由于任意一个三角形的三个顶点都不在同一直线上,所以由定理可知,经过三角形三个顶点可以作且只能作一个圆接下来介绍有关概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.由上面作图方法还可以看出:三角形的外心是三角形三边中垂线的交点三、应用举例,巩固新知【例1】 下面四个命题中真命题的个数是( )经过三点一定可以做圆;任意一个三角形一定有一个外接圆,而且只有一个外接圆;任意一个圆一定有一个内接三角形,而且只有一个内接三角形;三角形的外心到三角形三个顶点的距离相等A4个B3个C2个D1个【例2】 在ABC中,BC=24cm,外心O到BC的距离为6cm,求ABC的外接圆半径【例3】 如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由练习1工人师傅要铸造一个和残轮片(图5)同样大小的圆轮,需要知道它的半径,你能用本课所学知识,帮助工人师傅解决这一问题吗?写出具体作法分析:要想知道圆轮的半径,只要作出圆轮残片所在圆的圆心,而从本节所学定理可知,经过不在同一直线上的三个点可确定一个圆,于是可在残片的圆弧上任取三点,作过此三点的圆,即可确定残片的圆心和半径(此题实际上是一个作图题,可由学生口述,教师板演)练习2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖如图3-4-5中的三角形被一个圆所覆盖,图3-4-6中的四边形被两个圆所覆盖回答下列问题:(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm(3)边长为2cm,1cm的矩形被两个半径都为r的图所覆盖,r的最小值是 cm,这两个圆的圆心距是 cm四、师生共同小结1先由教师提出问题:(1)这节课我们主要学习了哪些具体内容?(2)用什么方法解决过已知点作圆的问题?(3)学习本节知识需要注意哪些问题?2在学生回答的基础上,教师加以小结:(1)本节课我们主要学习了经过不在同一直线上的三点作圆的问题(2)我们在分析过已知点作圆的问题时,紧紧抓住对圆心和半径的探讨已知圆心和半径就可作一个圆,这是从圆的定义引出的基本思想,因此作圆的问题,是如何根据已知条件找圆心和半径的问题由于作圆要经过已知点,如果圆心的位置确定了,圆的半径也就随之确定因此作圆的问题就又变成了找圆心的问题(3)学习本节定理,必须注意强调三个点的位置
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高频电流基础知识培训课件
- 济南市2024-2025学年八年级下学期语文月考测试试卷
- 高速养护业务知识培训课件
- 电脑趣味知识培训总结课件
- 电脑办公知识培训班课程课件
- rohs考试题及答案
- php上机考试及答案
- 浙江省瑞安市2024-2025学年四年级上学期期中考试科学试题(含答案)
- 电线基础知识培训心得
- 电站安全知识培训课件
- 2025版房地产抵押按揭续贷合同
- 小儿上呼吸道感染
- 2025年CCAA国家注册审核员考试(产品认证基础)历年参考题库含答案详解(5卷)
- 2025-2030中国骨科手术导航机器人医生培训体系与手术量增长关联报告
- 2025年秋季小学四年级上册语文教学计划及教学进度表
- 北京市西城区2024-2025学年七年级下学期期末道德与法治试题(解析版)
- 苏州工业园区外国语学校语文新初一均衡分班试卷
- 2025年广东省高考化学试题(含答案解析)
- 【2025秋新版】三年级上册语文生字组词
- 2025-2026小学学年度第一学期教学工作安排表:启智育心绘蓝图筑梦前行谱新篇
- GB/T 30807-2025建筑用绝热制品浸泡法测定长期吸水性
评论
0/150
提交评论