教学设计《三角函数的应用》临猗县耽子初中张娜.doc_第1页
教学设计《三角函数的应用》临猗县耽子初中张娜.doc_第2页
教学设计《三角函数的应用》临猗县耽子初中张娜.doc_第3页
教学设计《三角函数的应用》临猗县耽子初中张娜.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角函数的应用学习目标 1.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明. 2. 经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用;发展学生的数学应用意识和解决问题的能力. 3.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望. 培养独立思考问题的习惯和克服困难的勇气. 学习重点 体会三角函数在解决问题过程中的作用;发展学生数学应用意识和解决问题的能力.学习难点 根据题意,了解有关术语,准确地画出示意图.教学过程一、回顾与思考1、直角三角形中,三边的关系?两个锐角的关系?边与角的关系?2、互余两角之间的三角函数关系?3、同角之间的三角函数关系?4、30、45、60角的三角函数值是多少?二、创设情境、引入课题直角三角形就像一个万花筒,为我们展现出了一个色彩斑澜的世界.我们在欣赏了它神秘的“勾股”、知道了它的边的关系后,接着又为我们展现了在它的世界中的边角关系,它使我们现实生活中不可能实现的问题,都可迎刃而解.它在航海、工程等测量问题中有着广泛应用,例如测旗杆的高度、树的高度、塔高等. 下面我们就来看一个问题航海问题:海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55的B处,往东行驶20海里后,到达该岛的南偏西25的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.下面就请同学们用锐角三角函数知识解决此问题.(板书:三角函数的应用)三、引导探究,合作交流 请同学们根据题意在练习本上画出示意图,然后说明你是怎样画出来的.分析:首先我们可将小岛A确定,货轮B在小岛A的南偏西55的B处,C在B的正东方,且在A南偏东25处.示意图如下.根据题意,小岛四周10海里内有暗礁,那么货轮继续向东航行的方向如果到A的最短距离大于10海里,则无触礁的危险,如果小于10海里则有触礁的危险.A到BC所在直线的最短距离为过A作ADBC,D为垂足,即AD的长度.我们需根据题意,计算出AD的长度,然后与10海里比较. 解:过A作BC的垂线,交BC于点D.得到RtABD和RtACD,从而BD=ADtan55,CDADtan25,由BD-CDBC,又BC20海里.得 ADtan55-ADtan2520. AD(tan55-tan25)20, AD=20.79(海里). 这样AD20.79海里10海里,所以货轮没有触礁的危险.测量问题如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30,再往塔的方向前进50m至B处.测得仰角为60.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m) 分析:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.30的仰角指DAC,60的仰角指DBC. 解:在RtADC中,tan30=,即AC在RtBDC中,tan60=,即BC,又AB=AC-BC50 m,得 -=50. 解得CD43(m), 即塔CD的高度约为43 m. 如果设小明测量时,眼睛离地面的距离为1.6 m,其他数据不变,此时塔的高度为多少?你能画出示意图吗? CD43+1.644.6 m.即考虑小明的高度,塔的高度为44.6 m.四、解决问题,共同提升楼梯改造问题:某商场准备改善原来楼梯的安全性能,把倾角由40减至35,已知原楼梯长为4 m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.0l m) 请同学们根据题意,画出示意图,将这个实际问题转化成数学问题,(先独立完成,然后相互交流,讨论各自的想法) 分析:在这个问题中,要注意调整前后的梯楼的高度是一个不变量.根据题意可画示意图(如右图).其中AB表示楼梯的高度.AC是原楼梯的长,BC是原楼梯的占地长度;AD是调整后的楼梯的长度,DB是调整后的楼梯的占地长度.ACB是原楼梯的倾角,ADB是调整后的楼梯的倾角.转化为数学问题即为: 如图,ABDB,ACB40,ADB35,AC4m.求AD-AC及DC的长度. 解:由条件可知,在RtABC中,sin40,即AB4sin40m,原楼梯占地长BC4cos40m. 调整后,在RtADB中,sin35,则ADm.楼梯占地长DB=m.调整后楼梯加长AD-AC-40.48(m),楼梯比原来多占DCDB-BC= -4cos400.61(m).钢缆问题如图,一灯柱AB被一钢缆CD固定,CD与地面成40夹角,且DB5 m,现再在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少? 解:在RtCBD中,CDB=40,DB=5 m,sin40= ,BC=DBsin40=5sin40(m). 在RtEDB中,DB=5 m,BE=BC+EC2+5sin40(m). 根据勾股定理,得DE=7.96(m). 所以钢缆ED的长度为7.96 m.五课堂小结 六 当堂检测、1.如图,水库大坝的截面是梯形ABCD,坝顶AD 6 m,坡长CD8 m.坡底BC30 m,ADC=135. (1)求ABC的大小: (2)如果坝长100 m.那么建筑这个大坝共需多少土石料?(结果精确到0.01 m3) 2 如图, 小明想测量塔CD的高度.她在A处仰望塔

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论