




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
23.2抛物线的几何性质(二)学习目标1.掌握抛物线的几何特性.2.学会解决直线与抛物线相关的综合问题知识点直线与抛物线的位置关系思考1直线与抛物线有哪几种位置关系?思考2若直线与抛物线只有一个交点,直线与抛物线一定相切吗?梳理(1)直线与抛物线的位置关系与公共点个数位置关系公共点个数相交_公共点相切_公共点相离_公共点(2)直线ykxb与抛物线y22px(p0)的交点个数决定于关于x的方程k2x22(kbp)xb20的解的个数当k0时,若0,则直线与抛物线有_个不同的公共点;当0时,直线与抛物线有_个公共点;当0)上的两点,且OAOB.(1)求两点的横坐标之积和纵坐标之积;(2)求证:直线AB过定点反思与感悟在直线和抛物线的综合题中,经常遇到求定值、过定点问题,解决这类问题的方法很多,如斜率法、方程法、向量法、参数法等,解决这类问题的关键是代换和转化跟踪训练3如图,过抛物线y2x上一点A(4,2)作倾斜角互补的两条直线AB、AC交抛物线于B、C两点,求证:直线BC的斜率是定值命题角度2对称问题例4在抛物线y24x上恒有两点A,B关于直线ykx3对称,求k的取值范围反思与感悟轴对称问题,一是抓住对称两点的中点在对称轴上,二是抓住两点连线的斜率与对称轴所在直线斜率的关系跟踪训练4已知抛物线yx23上存在关于直线xy0对称的相异两点A,B,求A,B两点间的距离1过点P(0,1)与抛物线y2x有且只有一个交点的直线有()A4条 B3条C2条 D1条2已知点A(2,0),抛物线C:x24y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|MN|等于()A2 B12C1 D133已知点A(2,3)在抛物线C:y22px的准线上,过点A的直线与C在第一象限相切于点B,设C的焦点为F,则直线BF的斜率为()A. B.C. D.4过抛物线y24x的顶点O作互相垂直的两弦OM、ON,则M的横坐标x1与N的横坐标x2之积为_5已知顶点在原点,焦点在x轴上的抛物线截直线y2x4所得的弦长|AB|3,求此抛物线的方程求抛物线的方程常用待定系数法和定义法;直线和抛物线的弦长问题、中点弦问题及垂直、对称等可利用判别式、根与系数的关系解决;抛物线的综合问题要深刻分析条件和结论,灵活选择解题策略,对题目进行转化答案精析问题导学知识点思考1三种:相离、相切、相交思考2不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点梳理(1)有两个或一个有且只有一个无(2)两一没有平行或重合一题型探究例1解由方程组消去y得k2x2(2k24)xk20,(2k24)24k416(1k2)(1)若直线与抛物线有两个交点,则k20且0,即k20且16(1k2)0,解得k(1,0)(0,1)所以当k(1,0)(0,1)时,直线l和抛物线C有两个交点(2)若直线与抛物线有一个交点,则k20或当k20时,0,解得k0或k1.所以当k0或k1时,直线l和抛物线C有一个交点(3)若直线与抛物线无交点,则k20且1或k1或k0.设弦的两端点P1(x1,y1),P2(x2,y2),y1y2,y1y2.P1P2的中点为(4,1),2,k3,适合式所求直线方程为y13(x4),即3xy110,y1y22,y1y222,|P1P2| .方法二设P1(x1,y1),P2(x2,y2)则y6x1,y6x2,yy6(x1x2),又y1y22,3,所求直线的斜率k3,所求直线方程为y13(x4),即3xy110.由得y22y220,y1y22,y1y222,|P1P2| .例3(1)解设点A,B的坐标分别为(x1,y1),(x2,y2),则有kOA,kOB.因为OAOB,所以kOAkOB1,所以x1x2y1y20.因为y2px1,y2px2,所以y1y20.因为y10,y20,所以y1y24p2,所以x1x24p2.(2)证明因为y2px1,y2px2,所以(y1y2)(y1y2)2p(x1x2),所以,所以kAB,故直线AB的方程为yy1(xx1),所以yy1,即y.因为y2px1,y1y24p2,所以y,所以y(x2p),即直线AB过定点(2p,0)跟踪训练3证明方法一设AB的斜率为k,则AC的斜率为k.AB:y2k(x4)与y2x联立得y2k(y24),即ky2y4k20.y2是此方程的一个解,2yB,yB,xBy,B(,)kACk,以k代替k代入B点坐标得C(,)kBC,为定值方法二设B(y,y1),C(y,y2),则kBC.kAB,kAC,由题意得kABkAC,则y1y24,则kBC,为定值例4解因为A,B两点关于直线ykx3对称,所以可设直线AB的方程为xkym.设A(x1,y1),B(x2,y2),把直线AB的方程代入抛物线方程,得y24ky4m0,设AB的中点坐标为M(x0,y0),则y02k,x02k2m.因为点M(x0,y0)在直线ykx3上,所以2kk(2k2m)3,即m.因为直线AB与抛物线y2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 衡水金卷四省(四川云南)高三联考9月联考历史(含答案)
- 2025租赁合同终止协议书范文
- 企业安全培训账号密码课件
- 氢气制备与储存优化-洞察及研究
- 出入口保安培训课件
- 2025电视剧版权购买合同范本
- 2025合同范本合同协议书模板管理规程
- 2025年版融法合同违约诉状范本
- 2025管理技能合同风险评估与控制方法
- 2025《上海市机动车驾驶培训服务合同(示范文本)》
- 文创市集限定摊位协议
- 妇产科护理 课件06章-正常产褥期母婴的护理
- 《劳模工匠之光》课件 第1、2单元 民族大厦的基石、改革攻坚的先锋
- 2025年中国癌症筛查及早诊早治指南(试行)
- 2025年全国企业员工全面质量管理知识竞赛题库及答案
- 基孔肯雅热防控指南专题课件
- 2025年中级钳工技能鉴定考核试题库(附答案)
- 2025秋教科版科学二年级上册教学课件:第一单元第1课 动物的家
- GB/T 15620-2025镍及镍合金实心焊丝和焊带
- 名誉顾问聘任管理办法
- 牧昆:亚朵星球怎样用内容打增量 洞察无法逃离日常用真人秀的思路打增量
评论
0/150
提交评论