




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
历年高考数列真题汇编1、(2011年新课标卷文)已知等比数列中,公比(I)为的前n项和,证明:(II)设,求数列的通项公式解:()因为所以()所以的通项公式为2、(2011全国新课标卷理)等比数列的各项均为正数,且(1)求数列的通项公式.(2)设 求数列的前项和.解:()设数列an的公比为q,由得所以。有条件可知a0,故。由得,所以。故数列an的通项式为an=。()故所以数列的前n项和为3、(2010新课标卷理)设数列满足(1) 求数列的通项公式;(2) 令,求数列的前n项和解()由已知,当n1时,。而 所以数列的通项公式为。()由知 从而 -得 。即 4、(20I0年全国新课标卷文)设等差数列满足,。()求的通项公式; ()求的前项和及使得最大的序号的值。解:(1)由am = a1 +(n-1)d及a1=5,a10=-9得 解得数列an的通项公式为an=11-2n。 .6分 (2)由(1) 知Sn=na1+d=10n-n2。 因为Sn=-(n-5)2+25. 所以n=5时,Sn取得最大值。5、(2011年全国卷) 设等差数列的前N项和为,已知求和6、( 2011辽宁卷)已知等差数列an满足a2=0,a6+a8=-10 (I)求数列an的通项公式; (II)求数列的前n项和 解:(I)设等差数列的公差为d,由已知条件可得解得故数列的通项公式为 5分 (II)设数列,即,所以,当时, =所以综上,数列7、(2010年陕西省)已知an是公差不为零的等差数列,a11,且a1,a3,a9成等比数列.()求数列an的通项;()求数列2an的前n项和Sn.解 ()由题设知公差d0,由a11,a1,a3,a9成等比数列得,解得d1,d0(舍去), 故an的通项an1+(n1)1n.()由()知=2n,由等比数列前n项和公式得Sn=2+22+23+2n=2n+1-28、(2009年全国卷)设等差数列的前项和为,公比是正数的等比数列的前项和为,已知的通项公式。解: 设的公差为,的公比为由得 由得 由及解得 故所求的通项公式为 9、(2011福建卷)已知等差数列an中,a1=1,a3=-3.(I)求数列an的通项公式;(II)若数列an的前k项和Sk=-35,求k的值.10、(2011重庆卷)设是公比为正数的等比数列,,.()求的通项公式。()设是首项为1,公差为2的等差数列,求数列的前项和.11、(2011浙江卷)已知公差不为0的等差数列的首项为,且,成等比数列()求数列的通项公式;()对,试比较与的大小解:设等差数列的公差为,由题意可知即,从而因为故通项公式 ()解:记所以从而,当时,;当12、(2011湖北卷)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的、。(I) 求数列的通项公式;(II) 数列的前n项和为,求证:数列是等比数列。13、(2010年山东卷)已知等差数列满足:,的前项和为()求及;()令(),求数列的前项和为。解:()设等差数列的首项为,公差为,由于,所以,解得,由于, ,所以,()因为,所以因此故 所以数列的前项和14、(2010陕西卷)已知an是公差不为零的等差数列,a11,且a1,a3,a9成等比数列.()求数列an的通项;()求数列2an的前n项和Sn.解 ()由题设知公差d0,由a11,a1,a3,a9成等比数列得,解得d1,d0(舍去), 故an的通项an1+(n1)1n.()由()知=2n,由等比数列前n项和公式得Sm=2+22+23+2n=2n+1-2.、15、(2010重庆卷)已知是首项为19,公差为-2的等差数列,为的前项和.()求通项及;()设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.16、(2010北京卷)已知为等差数列,且,。()求的通项公式;()若等差数列满足,求的前n项和公式解:()设等差数列的公差。 因为 所以 解得所以 ()设等比数列的公比为 因为所以 即=3所以的前项和公式为17、(2010浙江卷)设a1,d为实数,首项为a1,公差为d的等差数an的前n项和为Sn,满足S2S6150.()若S5S.求Sn及a1;()求d的取值范围.解:()由题意知S0=-3,a=S-S=-8所以解得a1=7所以S=-3,a1=7()因为SS+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2a12+9da1+10d2+1=0.故(4a1+9d)2=d2-8. 所以d28.故d的取值范围为d-218、(2010四川卷)已知等差数列的前3项和为6,前8项和为-4。()求数列的通项公式;()设,求数列的前n项和)由()得解答可得,于是 若,将上式两边同乘以q有 两式相减得到 于是若,则所以,(12分)19、(2010上海卷)已知数列的前项和为,且,证明:是等比数列;解:由 (1)可得:,即。同时 (2)从而由可得:即:,从而为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国润滑基础油项目投资计划书
- 水利沟渠可行性研究报告
- 教育中的游戏化教学模式
- 中国聚酯切片(PET)项目商业计划书
- 2025年中国溶剂精制项目创业计划书
- 历史课堂中的多元文化教育实践
- 中国皮革化料项目经营分析报告
- 2025年水基型胶黏剂生产建设项目可行性研究报告 (一)
- 2025年eVTOL适航认证流程优化与全球标准协调研究
- 中国橡胶加工项目创业计划书
- 2025年下半年四川甘孜州考试招聘事业单位人员138人考试参考试题及答案解析
- 2025云南省交通投资建设集团有限公司下属曲靖管理处收费员招聘(76人)考试参考试题及答案解析
- 2025年法院书记员职位选拔综合能力测试题(附答案)
- 2025年10月“江南十校”2026届新高三第一次综合素质检测 化学试卷(含答案详解)
- RCT临床试验课题申报书模板及示范
- 7.水受热遇冷会怎样(教学设计)-四年级上册科学人教鄂教版
- 2025-2030FTTR家庭组网标准演进与市场渗透策略研究
- 屠宰兽医检验考试题及答案
- 内蒙古信息技术考试题库及答案
- 第四课 建设法治中国说课稿-2025-2026学年初中道德与法治统编版五四学制九年级上册-统编版五四学制2018
- 园林古建筑防雷设计方案
评论
0/150
提交评论