08-12年上海高考数学理科试卷.doc_第1页
08-12年上海高考数学理科试卷.doc_第2页
08-12年上海高考数学理科试卷.doc_第3页
08-12年上海高考数学理科试卷.doc_第4页
08-12年上海高考数学理科试卷.doc_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 0 0 8 年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海 数学试卷(理工农医类) 一. 填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分1不等式的解集是 .2若集合、满足,则实数=_.3若复数满足(是虚数单位),则=_.4若函数的反函数为(),则 .5若向量、满足,且与的夹角为,则=_.6函数的最大值是 .7在平面直角坐标系中,从六个点:、中任取三个,这三点能构成三角形的概率是 (结果用分数表示).8设函数是定义在上的奇函数. 若当时,则满足的的取值范围是 .9已知总体的各个体的值由小到大依次为2,3,3,7,12,13.7,18.3,20,且总体的中位数为. 若要使该总体的方差最小,则的取值分别是 .10某海域内有一孤岛. 岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为、短轴长为的椭圆. 已知岛上甲、乙导航灯的海拔高度分别为 ,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上. 现有船只经过该海 域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为,那么船只已进入该浅水区的判别条件是 .11方程的解可视为函数的图像与函数的图像交点的横坐标. 若方程的各个实根所对应的点()(=)均在直线的同侧,则实数的取值范围是 .二. 选择题(本大题满分16分)12. 组合数恒等于 ( ) (A) . (B) . (C) . (D) .13. 给定空间中的直线及平面. 条件“直线与平面内无数条直线都垂直”是“直线与平面垂直”的 ( ) (A) 充要条件. (B) 充分非必要条件. (C) 必要非充分条件. (D) 既非充分又非必要条件.14. 若数列是首项为1,公比为的无穷等比数列,且各项的和为,则的值是 ( ) (A) 1. (B) 2. (C) . (D) .15. 如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),是该圆的四等分点. 若点、点满足且, 则称优于. 如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧 ( )(A) . (B) . (C) . (D) .三. 解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤16.(本题满分12分) 如图,在棱长为 2 的正方体中,的中点. 求直线与平面所成角的大小(结果用反三角函数值表示). 解17.(本题满分13分)如图,某住宅小区的平面图呈圆心角为的扇形. 小区的两个出入口设置在点及点处,且小区里有一条平行于的小路. 已知某人从沿走到用了10分钟,从沿走到用了6分钟. 若此人步行的速度为每分钟50米,求该扇形的半径的长(精确到1米). 解 18.(本题满分15分)本题共有2个小题,第1小题满分6分,第2小题满分9分 已知双曲线,是上的任意点.(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;(2)设点的坐标为,求的最小值.19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2 小题满分8分 已知函数.(1)若,求的值;(2)若对于恒成立,求实数的取值范围. 20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分设是平面直角坐标系中的点,是经过原点与点的直线.记是直线与抛物线的异于原点的交点.(1)已知. 求点的坐标;(2)已知点在椭圆上,. 求证:点落在双曲线上;(3)已知动点满足,. 若点始终落在一条关于轴对称的抛物线上,试问动点的轨迹落在哪种二次曲线上,并说明理由.21. (本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分 已知以为首项的数列满足:(1) 当,时,求数列的通项公式;(2) (2)当,时,试用表示数列前100项的和;(3)当 (是正整数),正整数时,求证:数列,,成等比数列当且仅当. 2009年全国普通高等学校招生统一考试上海数学试卷(理科卷) 一真空题(本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分 .1 若复数 z 满足z (1+i) =1-i (I是虚数单位),则其共轭复数=_ .2 已知集合,且,则实数a的取值范围是_ .3 若行列式中,元素4的代数余子式大于0,则x满足的条件是_ . w.w.w.k.s.5.u.c.o.m 4某算法的程序框如右图所示,则输出量y与输入量x满足的关系式是_ .5如图,若正四棱柱的底面连长为2,高 为4,则异面直线与AD所成角的大小是_(结果用反三角函数表示).6函数的最小值是_ .7某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望_(结果用最简分数表示).8.已知三个球的半径,满足,则它们的表面积,满足的等量关系是_.9.已知、是椭圆(0)的两个焦点,为椭圆上一点,且.若的面积为9,则=_.10.在极坐标系中,由三条直线,围成图形的面积是_. w.w.w.k.s.5.u.c.o.m 11.当,不等式成立,则实数的取值范围是_.12已知函数.项数为27的等差数列满足,且公差.若,则当=_是,.13.某地街道呈现东西、南北向的网格状,相邻街距都为1.两街道相交的点称为格点。若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点,为报刊零售点.请确定一个格点(除零售点外)_为发行站,使6个零售点沿街道到发行站之间路程的和最短. w.w.w.k.s.5.u.c.o.m 14.将函数的图像绕坐标原点逆时针方向旋转角,得到曲线.若对于每一个旋转角,曲线都是一个函数的图像,则的最大值为_. w.w.w.k.s.5.u.c.o.m 二选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分。15.是“实系数一元二次方程有虚根”的(A)必要不充分条件 (B)充分不必要条件(C)充要条件 (D)既不充分也不必要条件16.若事件与相互独立,且,则的值等于(A) (B) (C) (D)17.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是(A)甲地:总体均值为3,中位数为4 (B)乙地:总体均值为1,总体方差大于0 (C)丙地:中位数为2,众数为3 (D)丁地:总体均值为2,总体方差为318.过圆的圆心,作直线分别交x、y正半轴于点A、B,被圆分成四部分(如图),若这四部分图形面积满足则直线AB有( )(A) 0条 (B) 1条 (C) 2条 (D) 3条三解答题(本大题满分78分)本大题共5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤19(本题满分14分)如图,在直三棱柱中,,求二面角的大小。w.w.w.k.s.5.u.c.o.m 20(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。有时可用函数 w.w.w.k.s.5.u.c.o.m 描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关。(1) 证明:当时,掌握程度的增加量总是下降;(2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,。当学习某学科知识6次时,掌握程度是85%,请确定相应的学科。21(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分。 已知双曲线设过点的直线l的方向向量 w.w.w.k.s.5.u.c.o.m (1) 当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2) 证明:当时,在双曲线C的右支上不存在点Q,使之到直线l的距离为。22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。 已知函数的反函数。定义:若对给定的实数,函数与互为反函数,则称满足“和性质”;若函数与互为反函数,则称满足“积性质”。(1) 判断函数是否满足“1和性质”,并说明理由;w.w.w.k.s.5.u.c.o.m (2) 求所有满足“2和性质”的一次函数;(3) 设函数对任何,满足“积性质”。求的表达式。23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。已知是公差为的等差数列,是公比为的等比数列。(1) 若,是否存在,有说明理由;w.w.w.k.s.5.u.c.o.m (2) 找出所有数列和,使对一切,并说明理由;(3) 若试确定所有的,使数列中存在某个连续项的和是数列中的一项,请证明。2010年普通高等学校招生全国统一考试(上海卷)数学(理科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。1、 不等式的解集为_;2、 若复数为虚数单位),则_;3、 若动点P到点F(2,0)的距离与它到直线的距离相等,则点P的轨迹方程为_;4、 行列式的值为_0_;5、 圆C:的圆心到直线的距离_3_;6、 随机变量的概率分布率由下图给出:x78910P()0.30.350.20.15则随机变量的均值是_8.2_;7、2010年上海世博会园区每天9:00开园,20:00停止入园。在右边的框图中,表示上海世博会官方网站在每个整点报道的入园总人数,表示整点报道前1个小时内入园人数,则空白的执行框内应填入 。8、对任意不等于1的正数,函数的反函数的图像都过点P,则点P的坐标是 。9、从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率 (结果用最简分数表示)。10、在行列矩阵中,记位于第行第列的数为。当时, 45 。11、将直线、(,)轴、轴围成的封闭图形的面积记为,则 1 。12、如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A(B)、C、D、O为顶点的四面体的体积为_;13、如图所示,直线与双曲线:的渐近线交于两点,记,。任取双曲线上的点,若(、),则、满足的一个等式是 。14、以集合 的子集中选出4个不同的子集,需同时满足以下两个条件: (1)都要选出; (2)对选出的任意两个子集A和B,必有或。那么共有_种不同的选法。二选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案。考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。15 “”是“”成立的 答( )(A)充分不必要条件. (B)必要不充分条件.(C)充分条件. (D)既不充分也不必要条件.16 直线的参数方程是,则的方向向量可以是 答( ) (A)(). (B)(). (C)() (D)()17.若是方程的解,则属于区间 答( )(A)(). (B)(). (C)() (D)()18.某人要制作一个三角形,要求它的三条高的长度分别为则此人能 答( )(A)不能作出这样的三角形. (B)作出一个锐角三角形.(C)作出一个直角三角形. (D) 作出一个钝角三角形.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤。19.(本题满分12分)已知,化简:.20. (本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。已知数列的前项和为,且,(1)证明:是等比数列;(2)求数列的通项公式,并求出为何值时,取得最小值,并说明理由.21.(本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,骨架把圆柱底面8等份,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径取何值时,取得最大值?并求出该最大值(结果精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为点,安装一些霓虹灯,当灯笼的底面半径为0.3米时,求图中两根直线与所在异面直线所成角的大小(结果用反三角函数表示). 22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。若实数、满足,则称比远离.(1)若比1远离0,求的取值范围;(2)对任意两个不相等的正数、,证明:比远离;(3)已知函数的定义域.任取,等于和中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).23(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知椭圆的方程为,点P的坐标为().(1)若直角坐标平面上的点、满足,求点的坐标;(2)设直线交椭圆于、两点,交直线于点.若,证明:为的中点;(3)对于椭圆上的点 ,如果椭圆上存在不同的两个交点、满足,写出求作点、的步骤,并求出使、存在的的取值范围.2011年上海高考数学试卷(理)一、填空题(每小题4分,满分56分)1函数的反函数为 .2. 若全集,集合,则 .3.设m是常数,若点F(0,5)是双曲线的一个焦点,则m= .4.不等式的解为 .5.在极坐标系中,直线与直线的夹角大小为 .(结果用反三角函数值表示)6.在相距2千米的A、B两点处测量目标点C,若,则A、C两点之间的距离为 千米.7.若圆锥的侧面积为,底面面积为,则该圆锥的体积为 .8.函数的最大值为 .9.马老师从课本上抄录一个随机变量的概率分布律如下表:123?!?请小牛同学计算的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案= .10.行列式所有可能的值中,最大的是 .11.在正三角行ABC中,D是BC上的点.若AB=3,BD=1,则 .12.随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为 (默认每个月的天数相同,结果精确到0.001).13. 设是定义在上,以1为周期的函数,若函数在区间上的值域为,则在区间上的值域为 .14.已知点O(0,0)、Q0(0,1)和点R0(3,1),记Q0R0的中点为P1,取Q0P1和P1R0中的一条,记其端点为Q1、R1,使之满足,记Q1R1的中点为P2,取Q1P2和P2R1中的一条,记其端点为Q2、R2,使之满足.依次下去,得到,则 .二、选择题(每小题5分,满分20分)15. 若,且,则下列不等式中,恒成立的是( )(A). (B). (C). (D).16.下列函数中,既是偶函数,又是在区间上单调递减的函数是( )(A). (B). (C). (D).17. 设是平面上给定的5个不同点,则使成立的点的个数为( )(A). (B)1. (C)5. (D)10.18.设是各项为正数的无穷数列,是边长为的矩形的面积(),则为等比数列的充要条件是( )(A)是等比数列. (B)或是等比数列.(C)和均是等比数列.(D)和均是等比数列,且公比相同.三、解答题(本大题满分74分)19(本大题满分12分)已知复数满足(为虚数单位),复数的虚部为2,且是实数,求20.(本大题满分12分,第1小题满分4分,第二小题满分8分) 已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围21. (本大题满分14分,第1小题满分6分,第二小题满分8分) 已知是底面边长为1的正四棱柱,为与的交点.(1)设与底面所成角的大小为,二面角的大小为.求证:;(2)若点C到平面AB1D1的距离为,求正四棱柱的高.22.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分)来源:学_已知数列和的通项公式分别为,(.将集合中的元素从小到大依次排列,构成数列(1)写出;(2)求证:在数列中,但不在数列中的项恰为;(3)求数列的通项公式.23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分)已知平面上的线段及点,任取上一点,线段长度的最小值称为点到线段的距离,记作(1)求点到线段的距离;(2)设是长为2的线段,求点的集合所表示的图形面积;(3)写出到两条线段距离相等的点的集合,其中,是下列三组点中的一组.对于下列三种情形,只需选做一种,满分分别是2分,6分,8分;若选择了多于一种情形,则按照序号较小的解答计分. .2012年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分)1.计算:= (i为虚数单位).2.若集合,则= .3.函数的值域是 .4.若是直线的一个法向量,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论