高一立体几何证明专题练习一.doc_第1页
高一立体几何证明专题练习一.doc_第2页
高一立体几何证明专题练习一.doc_第3页
高一立体几何证明专题练习一.doc_第4页
高一立体几何证明专题练习一.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一立体几何证明专题练习一1.如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1平面BCHG.2.如图,在直三棱柱ABCA1B1C1中,ABAC5,BB1BC6,D,E分别是AA1和B1C的中点(1)求证:DE平面ABC;(2)求三棱锥EBCD的体积 3.如图,多面体ABFEDC的直观图及三视图如图所示,M,N分别为AF,BC的中点(1)求证:MN平面CDEF;(2)求多面体ACDEF的体积4.如图所示,已知PA矩形ABCD所在平面,M,N分别是AB,PC的中点(1)求证:MNCD;(2)若PDA45,求证:MN平面PCD.5.如图,在四棱锥PABCD中,平面PAD平面ABCD,ABDC,PAD是等边三角形,已知BD2AD4,AB2DC2.(1)求证:BD平面PAD;(2)求三棱锥APCD的体积6.已知正方体ABCDA1B1C1D1中,E为棱CC1上的动点(1)求证:A1EBD;(2)当E恰为棱CC1的中点时,求证:平面A1BD平面EBD.7.如图,直角梯形ACDE与等腰直角ABC所在平面互相垂直,F为BC的中点,BACACD90,AECD,DCAC2AE2.(1)求证:AF平面BDE;(2)求四面体BCDE的体积 8. 如图所示,已知ABCDA1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AEFC1B1G1,H是B1C1的中点(1)求证:E、B、F、D1四点共面;(2)求证:平面A1GH平面BED1F. 9.如图,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点(1)证明:BC1平面A1CD;(2)若AA1ACCB2,AB2,求三棱锥CA1DE的体积 10.在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(1)若ACBC,证明:直线BC平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE平面A1MC?请证明你的结论 11.如图所示,在直三棱柱ABCA1B1C1中(侧棱垂直于底面的三棱柱叫直三棱柱),ABBB1,AC1平面A1BD,D为AC的中点求证:(1)B1C平面A1BD;(2)B1C1平面ABB1A1. 12. 如图所示,在正方体ABCDA1B1C1D1中,E、F分别是CD、A1D1的中点(1)求证:AB1BF;(2)求证:AEBF;(3)棱CC1上是否存在点P,使BF平面AEP,若存在,确定点P的位置,若不存在,说明理由13.如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH平面ABCD,BC平面GEFH.(1)证明:GHEF;(2)若EB2,求四边形GEFH的面积14.如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,ABBC,AA1AC2,BC1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论