3勾股定理的应用教学设计.doc_第1页
3勾股定理的应用教学设计.doc_第2页
3勾股定理的应用教学设计.doc_第3页
3勾股定理的应用教学设计.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3. 勾股定理的应用一、学情分析:认知基础:学生通过上节课的学习已经明确:如果三角形的三边的长为a,b,c满足 a2+b2=c2,那么这个三角形是直角三角形,并且c是斜边。我们可以利用这个知识,根据三角形三边长度之间的关系来判断一个三角形是否为直角三角形。从而为判断三角形的形状多提供了一种方法。活动经验基础:本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础二、本节课的教学目标是: 1.通过观察图形,探索图形间的关系,会把立体图形展成平面图形,发展学生的空间观念 2.在将实际问题抽象成数学问题的过程中,能构造直角三角形,提高分析问题、解决问题的能力及渗透数学建模的思想 3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性 利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点三、教法学法 1教学方法 引导探究归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程 2课前准备教具:教材、电脑、多媒体课件学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具我应该非常熟练的知识点来源:Z。xx。k.Com一、勾股定理:_在RtABC中,C=90则有_知识运用在RtABC中,C=90(1)若a=3,b=4,则c=;(2)若b=8,c=17,则a=_;勾股定理逆定理_探索:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?和小组同学讨论讨论,把你能想到的方法画一画吧!解决问题:方法提炼:解决实际问题的关键是根据实际问题建立相应的数学模型,解决这一类几何型问题的具体步骤大致可以归纳如下:练一练:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务吗? (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?随堂测:1甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6 km/h的速度向正东行走,1时后乙出发,他以5 km/h的速度向正北行走上午10:00,甲、乙两人相距多远?3有一个高为1.5 m,半径是1m的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5 m,问这根铁棒有多长?课后思考题:如果蚂蚁处于的位置是一个长、宽、高分别为5、4、3的长方体的左下端A,它到右上端B的最短路线该怎样选择呢?第六环节:交流小结1解决实际问题的方法是建立数学模型求解2没有图的要按题意画好图并标上字母;3.有时必须设好未知数,并根据勾股定理列出相应的方程式才能做出答案。4.在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题第七环节:布置作业1课本习题14 第1,2,3题六、教学设计反思本节从生动有趣的问题情景出发,通过学生自主探究,运用勾股定理及其逆定理解决简单的实际问题,既巩固了基本知识点,又在将实际问题抽象成几何图形过程中,学会观察,提高分析能力,渗透数学建摸思想在设计中,我注重以下两点:1要充分利用好教材提供的素材“蚂蚁怎么走最近”是一个生动有趣的问题,让学生充满了探究的欲望,这个问题体现了二、三维图形的转化,对发展学生的空间观念很有好处2合理使用教材提供的练习本节课通过“小试牛刀”和“举一反三”把教材中的练习重组,使练习有梯度,既巩固了基本知识点,又训练了学生的应用能力第一个作业让学生深入理解和应用勾股定理及逆定理3突破重点、突破难点的策略在教学过程中教师应通过情景创设,激发兴趣,鼓励引导学生经历探索过程,得出结论,从而发展学生的数学应用能力,提高学生解决实际问题的能力4分层教学根据本班学生实际情况可在教学过程中选择:基础训练“小试牛刀”;提高训练“举一反三”;拓展训练作业第2题5评价方式根据新课标的评价理念,在教学过程中应关注学生的参与程度,关注活动中所反映出的思维水平,关注对实际问题的理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论