




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四 角三角形的射影定理对应学生用书P141射影(1)点在直线上的正射影:从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影(2)线段在直线上的正射影:线段的两个端点在这条直线上的正射影间的线段(3)射影:点和线段的正射影简称为射影2射影定理(1)文字语言:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项(2)图形语言:如图,在RtABC中,CD为斜边AB上的高,则有CD2ADBD,AC2ADAB,BC2BDAB.对应学生用书P14射影定理的有关计算例1如图,在RtABC中,CD为斜边AB上的高,若AD2 cm,DB6 cm,求CD,AC,BC的长思路点拨在直角三角形内求线段的长度,可考虑使用勾股定理和射影定理解CD2ADDB2612,CD2(cm)AC2ADAB2(26)16,AC4(cm)BC2BDAB6(26)48,BC4(cm)故CD、AC、BC的长分别为2 cm,4 cm,4 cm.(1)在RtABC中,共有AC、BC、CD、AD、BD和AB六条线段,已知其中任意两条,便可求出其余四条(2)射影定理中每个等积式中含三条线段,若已知两条可求出第三条1.如图,在RtABC中,C90,CD是AB上的高已知BD4,AB29,试求出图中其他未知线段的长解:由射影定理,得BC2BDAB,BC2.又ADABBD29425.且AC2AB2BC2,AC5.CD2ADBD,CD10.2已知:CD是直角三角形ABC斜边AB上的高,如果两直角边AC,BC的长度比为ACBC34.求:(1)ADBD的值;(2)若AB25 cm,求CD的长解:(1)AC2ADAB,BC2BDAB,.()2()2.(2)AB25 cm,ADBD916,AD259(cm),BD2516(cm)CD12(cm).与射影定理有关的证明问题例2如图所示,CD垂直平分AB,点E在CD上,DFAC,DGBE,F、G分别为垂足求证:AFACBGBE.思路点拨先将图分解成两个基本图形(1)(2),再在简单的图形中利用射影定理证明所要的结论证明CD垂直平分AB,ACD和BDE均为直角三角形,且ADBD.又DFAC,DGBE,AFACAD2,BGBEDB2.AD2DB2,AFACBGBE.将原图分成两部分来看,就可以分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的在求解此类问题时,关键就是把握基本图形,从所给图形中分离出基本图形进行求解或证明3如图所示,设CD是RtABC的斜边AB上的高求证:CACDBCAD.证明:由射影定理知:CD2ADBD,CA2ADAB,BC2BDAB.CACDAD,BCADAD.即CACDBCAD.4RtABC中有正方形DEFG,点D、G分别在AB、AC上,E、F在斜边BC上求证:EF2BEFC.证明:过点A作AHBC于H.则DEAHGF.,.又AH2BHCH,DEGFBEFC.而DEGFEF,EF2BEFC.对应学生用书P15一、选择题1已知RtABC中,斜边AB5 cm,BC2 cm,D为AC上一点,DEAB交AB于E,且AD3.2 cm,则DE()A1.24 cmB1.26 cmC1.28 cm D1.3 cm解析:如图,AA,RtADERtABC,DE1.28.答案:C2已知直角三角形中两直角边的比为12,则它们在斜边上的射影比为()A12 B21C14 D41解析:设直角三角形两直角边长分别为1和2,则斜边长为,两直角边在斜边上的射影分别为和.答案:C3一个直角三角形的一条直角边为3 cm,斜边上的高为2.4 cm,则这个直角三角形的面积为()A7.2 cm2 B6 cm2C12 cm2 D24 cm2解析:长为3 cm的直角边在斜边上的射影为1.8(cm),由射影定理知斜边长为5(cm),三角形面积为52.46(cm2)答案:B4如图所示,在ABC中,ACB90,CDAB,D为垂足,若CD6 cm,ADDB12,则AD的值是()A6 cm B3 cmC18 cm D3 cm解析:ADDB12,可设ADt,DB2t.又CD2ADDB,36t2t,2t236,t3(cm),即AD3 cm.答案:B二、填空题5若等腰直角三角形的一条直角边长为1,则该三角形在直线l上的射影的最大值为_解析:射影的最大值即为等腰直角三角形的斜边长答案:6如图所示,四边形ABCD是矩形,BEF90,这四个三角形能相似的是_解析:因为四边形ABCD为矩形,所以AD90.因为BEF90,所以1290.因为2390,所以13.所以ABEDEF.答案:7在ABC中,A90,ADBC于点D,AD6,BD12,则CD_,AC_,AB2AC2_.解析:如图,AB2AD2BD2,又AD6,BD12,AB6.由射影定理可得,AB2BDBC,BC15.CDBCBD15123.由射影定理可得,AC2CDBC,AC3.4.答案:3341三、解答题8如图:在RtABC中,CD是斜边AB上的高,DE是RtBCD斜边BC上的高,若BE6,CE2.求AD的长是多少解:因为在RtBCD中,DEBC,所以由射影定理可得:CD2CEBC,所以CD216,因为BD2BEBC,所以BD4.因为在RtABC中,ACB90,CDAB,所以由射影定理可得:CD2ADBD,所以AD.9如图,在ABC中,CDAB于D,且CD2ADBD,求证:ACB90.证明:CDAB,CDABDC90.又CD2ADBD,即ADCDCDBD,ACDCBD.CADBCD.又ACDCAD90,ACBACDBCDACDCAD90.10已知直角三角形周长为48 cm,一锐角平分线分对边为35两部分(1)求直角三角形的三边长;(2)求两直角边在斜边上的射影的长解:(1)如图,设CD3x,BD5x,则BC8x,过D作DEAB,由题意可得,DE3x,BE4x,AEAC12x48.又AEAC,AC246x,AB242x.(246x)2(8x)2(242x)2,解得:x10(舍去),x22.AB20,AC12,BC16,三边长分别为:20 cm,12 cm,16 cm.(2)作CFAB于F点,AC2AFAB.AF(cm);同理:BF(cm)两直角边在斜边上的射影长分别为 cm, cm.对应学生用书P16近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系1.如图,在梯形ABCD中,ABCD,AB4,CD2,E,F分别为AD,BC上的点,且EF3,EFAB,则梯形ABFE与梯形EFCD的面积比为_解析:由CD2,AB4,EF3,得EF(CDAB),EF是梯形ABCD的中位线,则梯形ABFE与梯形EFCD有相同的高,设为h,于是两梯形的面积比为(34)h(23)h75.答案:752.如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB3AD,则的值为_解析:连接AC,BC,则ACB90.设AD2,则AB6,于是BD4,OD1.如图,由射影定理得CD2ADBD8,则CD2.在RtOCD中,DE.则CE ,EOOCCE3.因此8.答案:8对应学生用书P16平行线分线段相关定理平行线等分线段定理、平行线分线段成比例定理,其实质是揭示一组平行线在与其相交的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例例1如图,在ABC中,DEBC,DHGC.求证:EGBH.证明DEBC,.DHGC,.AEABACADAHAG.EGBH.例2如图,直线l分别交ABC的边BC,CA,AB于点D,E,F,且AFAB,BDBC,试求.解作CNAB交DF于点N,并作EGAB交BC于点G,由平行截割定理,知,两式相乘,得,即.又由AFAB,得2,由BDBC,得,所以2.相似三角形的判定与性质相似三角形的判定与性质揭示了形状相同,大小不一定相等的两个三角形之间的边、角关系其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系其中,三角形全等是三角形相似的特殊情况例3如图所示,AD、CF是ABC的两条高线,在AB上取一点P,使APAD,再从P点引BC的平行线与AC交于点Q.求证:PQCF.证明AD、CF是ABC的两条高线,ADBBFC90.又BB,ABDCBF.又PQBC,APQABC.又APAD,CFPQ.例4四边形ABCD中,ABCD,CE平分BCD,CEAD于点E,DE2AE,若CED的面积为1,求四边形ABCE的面积解如图,延长CB、DA交于点F,又CE平分BCD,CEAD.FCD为等腰三角形,E为FD的中点SFCDFDCE2EDCE2SCED2,EFED2AE.FAAEFD.又ABCD,FBAFCD.()2()2.SFBASFCD.S四边形ABCESFCDSCEDSFBA21.射影定理射影定理揭示了直角三角形中两直角边在斜边上的射影,斜边及两直角边之间的比例关系,此定理常作为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错例5如图,在ABC中,ACB90,CDAB于D,DEAC于E,EFAB于F.求证:CE2BDDF.证明ACB90,DEAC,DEBC.同理:CDEF,.ACB90,CDAB,AC2ADAB.CE2BDDF.对应学生用书P41(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,已知AABBCC,ABBC13,那么下列等式成立的是()AAB2ABB3ABBCCBCBC DABAB解析:AABBCC,.3ABBC.答案:B2.如图,ACB90.CDAB于D,AD3、CD2,则ACBC的值是()A32 B94C. D.解析:RtACDRtCBD,.答案:A3在RtABC中,CD为斜边AB上的高,若BD3 cm,AC2 cm,则CD和BC的长分别为()A. cm和3 cmB1 cm和 cmC1 cm和3 cmD. cm和2 cm解析:设ADx,则由射影定理得x(x3)4,即x1(负值舍去),则CD(cm),BC2(cm)答案:D4如图,在ABC中,BAC90,AD是斜边BC上的高,DE是ACD的高,且AC5,CD2,则DE的值为()A. B.C. D.解析:AC2CDBC,即522BC,BC.AB .,DE.答案:A5如图所示,给出下列条件:BACD;ADCACB;AC2ADAB.其中单独能够判定ABCACD的个数为()A1 B2C3 D4解析:由BACD,再加上公共角AA,可得两个三角形相似;由ADCACB,再加上公共角AA,可得两个三角形相似;,而夹角不一定相等,所以两个三角形不一定相似;AC2ADAB可得,再加上公共角AA,可得两个三角形相似答案:C6.如图,DEBC,SADES四边形DBCE18,则ADDB的值为()A14 B13C12 D15解析:由SADES四边形DBCE18得SADESABC19.DEBC,ADEABC.()2.,.答案:C7ABC和DEF满足下列条件,其中不一定使ABC与DEF相似的是()AAD4538,C2622,E108BAB1,AC1.5,BC2,DE12,EF8,DF16CBCa,ACb,ABc,DE,EF,DFDABAC,DEDF,AD40解析:A中AD,BE108,ABCDEF;B中ABACBCEFDEDF234;ABCEFD;D中,AD,ABCDEF;而C中不能保证三边对应成比例答案:C8在RtACB中,C90.CDAB于D.若BDAD14,则tanBCD的值是()A. B.C. D2解析:由射影定理得CD2ADBD,又BDAD14.令BDx,则AD4x(x0),CD24x2,CD2x,tanBCD.答案:C9.在ABCD中,E为CD上一点,DECE23,连接AE、BE、BD且AE、BD交于点F,则SDEFSEBFSABF()A41025 B4925C235 D2525解析:ABCD,ABFEDF.()2.又DEF和BEF等高.答案:A10如图,已知ab,3.则AEEC()A.B.C. D.解析:ab,.3,BC3CD,BD4CD.又,.答案:A二、填空题(本大题共4个小题,每小题5分,满分20分把答案填写在题中的横线上)11如图,D,E分别是ABC边AB,AC上的点,且DEBC,BD2AD,那么ADE的周长ABC的周长等于_解析:DEBC,ADEABC.BD2AD,AB3AD.答案:12如图,在ABC中,DEBC,DFAC,AEAC35,DE6,则BF_.解析:DEBC,BCDE610,又DFAC,DEFC6.BFBCFC4.答案:413如图,在ABC中,DEBC,BE与CD相交于点O,直线AO与DE、BC分别交于N、M,若DNMC14,则NEBM_,AEEC_.解析:,.又,.AEEC13.答案:141314阳光通过窗口照到室内,在地面上留下2.7 m宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE8.7 m,窗口高AB1.8 m,那么窗口底边离地面的高BC等于_m.解析:BDAE,.BC.AB1.8 m,DE2.7 m,CE8.7 m,CDCEDE8.72.76(m)BC4(m)答案:4三、解答题(本大题共4个小题,满分50分解答应写出必要的文字说明、证明过程或演算步骤)15(本小题满分12分)如图,ABC中,BC的中点为D,ADB和ADC的平分线分别交AB、AC于点M、N.求证:MNBC.证明:MD平分ADB,.ND平分ADC,.BDDC,.MNBC.16(本小题满分12分)如图,已知:ABC中,ABAC,AD是中线,P是AD上一点,过C作CFAB,延长BP交AC于E,交CF于F,求证:BP2PEPF.证明:连接PC,ABAC,AD是中线,AD是ABC的对称轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版施工现场安全生产应急救援物资储备合同
- 2025年度农村土地流转合作合同示范文本
- 2025年度港口装卸司机临时用工服务协议书
- 2025版金融服务业员工劳务外包专项协议
- 海南省儋州市2025年上半年公开招聘辅警试题含答案分析
- 2025版互联网企业远程培训讲师聘用合同标准文本
- 2025版外汇借款合同国际化与本土化融合示范文本
- 2025年汽车维修保养连锁店车辆借款合同
- 贵州省余庆县2025年上半年公开招聘村务工作者试题含答案分析
- 贵州省金沙县2025年上半年公开招聘村务工作者试题含答案分析
- GB/T 13305-2024不锈钢中α-相含量测定法
- DL∕T 618-2022 气体绝缘金属封闭开关设备现场交接试验规程
- 多糖铁胶囊的吸收和代谢途径研究
- 艾梅乙检测结果解读培训课件
- 工业控制系统安全与实践 课件全套 第1-9章 工业控制系统安全-入侵响应
- 胰岛素抵抗学习课件
- 2023上海市奉贤区第八批储备人才及定向选调生招募91人考前自测高频难、易考点模拟试题(共500题)含答案详解
- 高考英语单项选择题题库(660题)
- 圆锥曲线大单元教学设计
- 水轮机类型与构造-反击式水轮机的主要部件
- 2023年AHA心肺复苏和心血管急救指南更新
评论
0/150
提交评论