



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,仅供学习与交流,如有侵权请联系网站删除全等三角形培优训练题11、已知正方形ABCD中,E为对角线BD上一点,过E点作EFBD交BC于F,连接DF,G为DF中点,连接EG,CG(1)直接写出线段EG与CG的数量关系;(2)将图1中BEF绕B点逆时针旋转45,如图2所示,取DF中点G,连接EG,CG你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明 (3)将图1中BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立? FBACE图3DFBADCEG图2FBADCEG图12、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,且EF交正方形外角的平行线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由ADFCGEB图1ADFCGEB图2ADFCGEB图33、已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、又有怎样的数量关系?请写出你的猜想,不需证明AECFBD图1图3ADFECBADBCE图2F5、如图9,若ABC和ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,AMN是等边三角形 (1)当把ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(4分) (2)当ADE绕A点旋转到图11的位置时,AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,ADE与ABC及AMN的面积之比;若不是,请说明理由(6分)图9 图10 图11图86、点C为线段AB上一点,ACM, CBN都是等边三角形,线段AN,MC交于点E,BM,CN交于点F。求证:(1)AN=MB.(2)CEF为等边三角形。(3)将ACM绕点C按逆时针方向旋转一定角度,其他条件不变,(1)中的结论是否依然成立?(只回答不证明),(4)AN与BM相交所夹锐角是否发生变化,(只回答不证明)。7、问题:已知中,点是内的一点,且,探究与度数的比值 请你完成下列探究过程: 先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明 (1)当时,依问题中的条件补全右图 观察图形,与得数量关系为_; 当退出时,可进一步推出的度数为_; 可得到与度数的比值为_ (2)当时,请你画出图形,研究与度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明8、直线CD经过的顶点C,CA=CBE、F分别是直线CD上两点,且(1)若直线CD经过的内部,且E、F在射线CD上,请解决下面两个问题:如图1,若,则 (填“”,“”或“”号);如图2,若,若使中的结论仍然成立,则 与 应满足的关系是 ;(2)如图3,若直线CD经过的外部,请探究EF、与BE、AF三条线段的数量关系,并给予证明ABCEFDDABCEFADFCEB图1图2图312、如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM. 求证:AMBENB;EA DB CNM 当M点在何处时,AMCM的值最小;当M点在何处时,AMBMCM的值最小,并说明理由;10、如图,直角梯形ABCD中,且,过点D作,交的平分线于点E,连接BE(1)求证:;(2)将绕点C,顺时针旋转得到,连接EG.求证:CD垂直平分EG.(3)延长BE交CD于点P求证:P是CD的中点ADGECB11、已知:如图,AF平分BAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025设备材料购销合同范本范文
- 农业种植技术服务合作合同书
- 红楼梦课件无水印
- 工业园区租赁经营协议
- 员工培训与委托培养协议内容说明
- 工艺品设计与制作服务合同
- 业务洽谈合同条款审查模板
- 农业金融投资合作合同
- 诗人杜牧简介
- 2025年征兵考试题库及答案
- 2025至2030全球及中国过敏原提取物行业产业运行态势及投资规划深度研究报告
- 物业基础培训课件
- 人教版九年级上册历史期末复习知识点考点背诵提纲详细版
- 2025年广东省中考英语真题(原卷版)
- 捐资奖学金活动方案
- 非标自动化培训
- 2025年贵州省中考化学试卷真题(含答案解析)
- 高桩码头施工培训课件
- 2025至2030中国工业混合式步进电机行业发展趋势分析与未来投资战略咨询研究报告
- 《大学体育理论与实践教程》大学体育课程全套教学课件
- 2025年电信网上大学智能云服务交付工程师认证参考试题库-上(单选题)
评论
0/150
提交评论