遗传算法课件PPTppt课件_第1页
遗传算法课件PPTppt课件_第2页
遗传算法课件PPTppt课件_第3页
遗传算法课件PPTppt课件_第4页
遗传算法课件PPTppt课件_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第三章遗传算法 2 五 遗传算法的各种变形5 1其它编码方法5 2遗传运算中的问题5 3适值函数的标定 Scaling 5 4选择策略5 5停止准则六 应用 遗传算法 3 5 1其它编码方法顺序编码 用1到N的自然数的不同顺序来编码 此种编码不允许重复 即且 又称自然数编码 该法适用范围很广 指派问题 旅行商问题和单机调度问题等等 合法性问题 是否符合采用的编码规则的问题 五 GA的各种变形 1 4 实数编码 R为实数集特征 方便运算简单 但反映不出基因的特征整数编码类似于顺序编码 但编码允许重复适用于 新产品投入 时间优化 伙伴挑选例 3212345对顺序编码来说是不合法的 而对整数编码来说是合法的 010200不合法的01编码 五 GA的各种变形 2 5 5 2遗传运算中的问题在顺序编码遗传运算的过程中会遇见不合法的编码 应战的策略有二 拒绝或修复 例如 经双切点交叉后 后代编码不合法21 345 6721 125 6743 125 7643 345 76我们采用下面的修复策略使以上的编码合法 五 GA的各种变形 3 6 顺序编码的合法性修复 交叉修复策略 分为以下几种 部分映射交叉顺序交叉循环交叉 五 GA的各种变形 4 7 部分映射交叉 PMX PartiallyMappedCrossover 用特别的修复程序解决简单的双切点交叉引起的非法性 步骤 选切点X Y 交换中间部分 确定映射关系 将未换部分按映射关系恢复合法性 五 GA的各种变形 5 8 PMX例题 五 GA的各种变形 6 9 顺序交叉 OX OrderCrossover 可看做是带有不同修复程序的部分映射交叉的变形 OX步骤 选切点X Y 交换中间部分 从切点Y后第一个基因起列出原顺序 去掉已有基因 从切点Y后第一个位置起 按顺序填入 五 GA的各种变形 7 10 OX例题 五 GA的各种变形 8 11 OX的特点 较好的保留了相邻关系 先后关系 满足了TSP问题的需要 但不保留位值特征 五 GA的各种变形 9 12 循环交叉 CX CycleCrossover基本思想 子串位置上的值必须与父母的相同位置上的位值相等 CX步骤 选的第一个元素作为的第一位 选的第一个元素作为的第一位 五 GA的各种变形 10 13 到中找的第一个元素赋给的相对位置 重复此过程 直到上得到的第一个元素为止 称为一个循环 对最前的基因按 基因轮替原则重复以上过程 重复以上过程 直到所有位都完成 五 GA的各种变形 11 14 CX例题 五 GA的各种变形 12 15 CX的特点 与OX的特点不同的是 CX较好的保留了位值特征 适合指派问题 而OX较好的保留了相邻关系 先后关系满足了TSP问题的需要 五 GA的各种变形 13 16 变异的修复策略换位变异 最常用 是随机地在染色体上选取两个位置 交换基因的位值 例 43125674512367移位变异 任选一位移到最前例 43125675431267 五 GA的各种变形 14 17 实数编码的合法性修复交叉单切点交叉 五 GA的各种变形 15 切点 18 双切点交叉 与单切点交叉类似 该方法最大的问题 如何在实际优化中保持可行性 五 GA的各种变形 16 19 五 GA的各种变形 17 凸组合交叉 可以克服上面简单交叉操作导致的解的不可行性 约束是个凸集 可行性可以保持 但是分散性太差 又出现了向中间汇集的问题 20 变异位值变异 任选一位加 变异步长 例 五 GA的各种变形 18 21 向梯度方向变异缺点 只能用于目标函数可微的问题 例 对于最大化问题可采用如下操作 优点 考虑到了问题本身的性质 效率较高 但染色体种群也可能因此而趋于聚集 导致种群的多样性较差 五 GA的各种变形 19 22 5 3适值函数的标定 Scaling 五 GA的各种变形 20 23 标定的目的 使适值函数不会太大 有一定差别选择压力的概念 选择压力是种群好 坏个体被选中的概率之差 差大称为选择压力大 注意 上述概念中的 差大小 是相对于适值函数而言的 五 GA的各种变形 21 24 局部搜索 广域搜索与选择压力的关系局部搜索与广域搜索是GA中的一对矛盾 只注重局部搜索很可能陷入局优 只注重广域搜索则会导致精确开发能力不强 因此 好的算法要将以上二者综合考虑 一般来说 算法开始时应注重广域搜索 通过使用较小的选择压力来实现 随着迭代的进行 逐步偏重于局部搜索 通过使用较大的选择压力来实现 五 GA的各种变形 22 25 适值的标定方法线性标定 函数表达式 为目标函数 为适值函数 五 GA的各种变形 23 26 对 1 函数表达式 对 1 函数表达式 上述中的 是一个较小的数 目的是使种群中最差的个体仍然有繁殖的机会 增加种群的多样性 五 GA的各种变形 24 27 动态线性标定 最常用 线性标定中的参数随着迭代次数的增加而变化时就得到了动态线性标定优点 计算容易不占用时间函数表达式 为迭代指标最常用最大化 1 函数表达式 五 GA的各种变形 25 第k代的最小目标函数值 28 加入的意义 同线性标定中 的意义 加入使最坏个体仍有繁殖的可能 随的增大而减小的取值 调节和 从而来调节 五 GA的各种变形 26 29 五 GA的各种变形 27 引入的目的 调节选择压力 即好坏个体选择概率的差 使广域搜索范围宽保持种群的多样性 而局域搜索细保持收敛性 如下图表示 开始 希望选择压力小后来 希望选择压力大 30 幂律标定 函数表达式 的取值 1时选择压力加大 1时选择压力减小对数标定 函数表达式 对数标定的作用 缩小目标函数值的差别 五 GA的各种变形 28 31 指数标定 函数表达式 指数标定的作用 扩大差别窗口技术 函数表达式 为前W代中的最小目标值 它考虑了各代的波动 这样具有记忆性 五 GA的各种变形 29 32 正规化技术 函数表达式 正规化技术的作用 将映射到 0 1 区间 抑制超级染色体正规化技术的实质 特殊的动态标定即其中 五 GA的各种变形 30 33 5 4选择策略传统的GA选择和遗传是一起进行的 即使后代不如父代 却无法纠正 下面介绍的选择策略都是先遗传后选择 这样 样本空间扩大了 可供选择的个体增多了 五 GA的各种变形 31 34 截断选择 选择最好的前T个个体 让每一个有1 T的选择概率 平均得到NP T个繁殖机会 例 NP 100 T 50即100名学生 成绩前50名的选出 每人的选择概率为1 50 有平均2个机会 缺点 这种方法将花费较多的时间在适应值的排序上 五 GA的各种变形 32 35 顺序选择 步骤 从好到坏排序所有个体 定义最好个体的选择概率为 则第个个体的选择概率为 五 GA的各种变形 33 36 由于有限时要归一化 则有下面的公式 其中顺序选择的优点 选择概率可以离线计算 节省算法执行时间 且选择压力可控 缺点 把选择概率固定化了 选择压力不可调节 五 GA的各种变形 34 37 举例 且 采用旋轮法 随机产生当 选择个体 五 GA的各种变形 35 前i 1个个体的选择概率 前i个个体的选择概率 38 正比选择 个体i的选择概率令 用动态标定来调节选择压力 采用旋轮法来共同完成种群的选择 五 GA的各种变形 36 39 5 5停止准则指定最大代数 常用 该方法简单但不准确 检查种群中适值的一致性 保持历史上最好的个体 计算公式 或第二种方法因很难实现 所以很少使用 五 GA的各种变形 37 40 背包问题个物品 对物品 价值为 重量为 背包容量是 如何选取物品装入背包 使背包中的价值最大 六 应用 1 41 模型 二进制编码方法 装入物品 不装入物品 六 应用 2 42 例如 对于一个7个项目的背包问题 背包容量W 100 具体数据见下表 考察如下编码X 1100110 这表示项目1 2 5和6被装入了背包 经过计算可知产生的解不可行 背包问题示例 43 如何处理约束来保持可行性拒绝策略 可行解不易达到时 很难达到一个初始种群修复策略 将不可行解修复为可行的 但将失去多样性 六 应用 3 44 惩罚策略 要求设计适当的惩罚函数 但设计不好会掩盖目标函数的优化 下面 我们将分别采用惩罚策略和解码法来处理上面的背包问题 六 应用 4 45 罚函数法令适值函数 其中是目标函数令 其中注 与是的两个端点 六 应用 5 46 函数式的意义 的作用是使 保证 可行也惩罚 只有当时不惩罚 罚函数法的目的 把解拉向边界 尽量装满 六 应用 6 47 解码法 FirstFitHeuristic 优先适合启发式 解码法是一段修复程序 修复可行性的方法 步骤 将选上物品按降序排列 选前个物品 使 解码法的关键 如何在GA中解决可行性问题 编码方法 采用顺序编码 六 应用 7 48 例 7用顺序 3251467 表示选择物品的顺序用优先适合启发式保留前K位 使解可行即 3 325 问题 编码长度是可变的 如何做交叉和变异 六 应用 8 30 50 10 40 100 49 变长顺序编码的遗传算法插入式交叉算法在上选一个随机的断点 在上随机选一个基因片断插入的断点处 去掉上的重复基因 按优先适合启发式得到可行解见下页例题 六 应用 9 50 例题 六 应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论