




免费预览已结束,剩余15页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
舒城中学2018-2019学年度第二学期期末考试高二理数一、选择题(本题包括12小题,每小题5分,共60分.每小题只有一个选项符合题意.请把正确答案填在答题卷的答题栏内.)1.集合,则等于( )A. B. C. D. 【答案】B【解析】试题分析:集合,,,故选B.考点:指数函数、对数函数的性质及集合的运算.2.已知复数满足(其中为虚数单位),则的共轭复数( )A. B. C. D. 【答案】A【解析】【分析】利用等式把复数z计算出来,然后计算z的共轭复数得到答案.【详解】,则.故选A【点睛】本题考查了复数的计算和共轭复数,意在考查学生对于复数的计算能力和共轭复数的概念,属于简单题.3.是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.4.函数的图象大致为( )A. B. C. D. 【答案】C【解析】【分析】根据奇偶性以及特殊值即可排除。【详解】因为=,所以为奇函数图像关于原点对称,排除BD,因为,所以排除A答案,选择D【点睛】本题主要考查了函数图像的判断方法,常利用函数的奇偶性质,特殊值法进行排除,属于中等题。5.为了得到函数的图象,可以将函数的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度【答案】B【解析】试题分析:,将函数的图象向右平移个单位长度故选B考点:函数的图象变换.6.已知随机变量和,其中,且,若的分布列如下表,则的值为( )1234P mnA. B. C. D. 【答案】A【解析】【分析】根据随机变量和的关系得到,概率和为1,联立方程组解得答案.【详解】且,则即 解得 故答案选A【点睛】本题考查了随机变量的数学期望和概率,根据随机变量和的关系得到是解题的关键.7.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是( )A. B. C. D. 【答案】B【解析】【分析】在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【详解】在中,为线段的中点,又,则为等腰直角三角形. 故答案选B【点睛】本题考查了双曲线的离心率,属于常考题型.8.的外接圆的圆心为,则等于( )A. B. C. D. 【答案】C【解析】【详解】,选C9.某同学同时掷两颗骰子,得到点数分别为,则椭圆的离心率的概率是( )A. B. C. D. 【答案】C【解析】共6种情况10.设,若,则的值为( )A. B. C. D. 【答案】D【解析】【分析】分别取代入式子,相加计算得到答案.【详解】取得:取得:两式相加得到 故答案选D【点睛】本题考查了二项式定理,取特殊值是解题的关键.11.已知函数,若在上有解,则实数取值范围为( )A. B. C. D. 【答案】D【解析】【分析】首先判断函数单调性为增. ,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【详解】定义域上单调递增,则由,得,则当时,存在的图象在的图象上方.,则需满足.选D.【点睛】本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.12.两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为( )A. B. C. D. 【答案】D【解析】【分析】取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,分别得出、以及,然后列出有关的方程,即可求出的值【详解】因为三个球都与直二面角的两个半平面相切,所以与、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,则,所以,等式两边平方得,化简得,由于,解得,故选D【点睛】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.二、填空题(本题4小题,每小题5分,共20分.请把正确答案写在答卷上.)13.已知向量满足,的夹角为,则_【答案】 【解析】14.已知某程序框图如图所示,则执行该程序后输出的结果是_.【答案】-1【解析】【分析】本题考查了程序框图中的循环结构,带入求值即可。【详解】当。这是一个循环结构且周期为3,因为,所以输出结果为-1【点睛】本题主要考查了程序框图中的循环结构,带入求出周期即可。15.如果不等式的解集为,且,那么实数的取值范围是 _【答案】【解析】【分析】将不等式两边分别画出图形,根据图像得到答案.【详解】不等式的解集为,且画出图像知: 故答案为:【点睛】本题考查了不等式的解法,将不等式关系转化为图像是解题的关键.16.已知是椭圆的左、右焦点,过左焦点的直线与椭圆交于两点,且,则椭圆的离心率为_【答案】【解析】【分析】连接,设,利用椭圆性质,得到长度,分别在和中利用余弦定理,得到c的长度,根据离心率的定义计算得到答案.【详解】设,则,由,得,在中,又在中,得故离心率【点睛】本题考察了离心率的计算,涉及到椭圆的性质,正余弦定理,综合性强,属于难题.三、解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤,把解题过程和步骤写在答题卷上.第17-21题为必考题,第22、23题为选考题.)(一)第1721题为必做题17.已知数列是公差不为的等差数列,且,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)根据等差数列的定义和,成等比数列代入公式得到方程,解出答案.(2)据(1)把通项公式写出,根据裂项求和的方法求得.【详解】解:(1) ,成等比数列,则或(舍去)所以(2)【点睛】本题考查了公式法求数列通项式,裂项求和方法求,属于基础题.18.在四棱锥中,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值【答案】(1)详见解析;(2).【解析】试题分析:()取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形得到DEAF,再由线面平行的判定可得ED面PAB;()法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得ABAC,找出二面角A-PC-D的平面角求解三角形可得二面角A-PC-D的余弦值试题解析:()证明:取PB的中点F,连接AF,EFEF是PBC的中位线,EFBC,且EF=又AD=BC,且AD=,ADEF且AD=EF,则四边形ADEF是平行四边形DEAF,又DE面ABP,AF面ABP,ED面PAB()法一、取BC的中点M,连接AM,则ADMC且AD=MC,四边形ADCM是平行四边形,AM=MC=MB,则A在以BC为直径的圆上ABAC,可得过D作DGAC于G,平面PAC平面ABCD,且平面PAC平面ABCD=AC,DG平面PAC,则DGPC过G作GHPC于H,则PC面GHD,连接DH,则PCDH,GHD是二面角APCD的平面角在ADC中,连接AE,在RtGDH中,即二面角APCD的余弦值 法二、取BC的中点M,连接AM,则ADMC,且AD=MC四边形ADCM是平行四边形,AM=MC=MB,则A在以BC为直径的圆上,ABAC面PAC平面ABCD,且平面PAC平面ABCD=AC,AB面PAC如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系可得,设P(x,0,z),(z0),依题意有,解得则,设面PDC的一个法向量为,由,取x0=1,得为面PAC的一个法向量,且,设二面角APCD的大小为,则有,即二面角APCD的余弦值 19.某公园设有自行车租车点,租车的收费标准是每小时元(不足一小时的部分按一小时计算)甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为,一小时以上且不超过两小时还车的概率分别为,两人租车时间都不会超过三小时(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望【答案】(1);(2)见解析【解析】【分析】(1)两人所付租车费用相同的情况有2,4,6三种,分别算出对应概率,相加得到答案.(2)可能取值为,分别计算概率,写出分布列计算数学期望.【详解】解:(1)甲、乙两人所付租车费用相同即为元都付元的概率为,都付元的概率为;都付元的概率为,故所付费用相同的概率为(2)依题意知,的可能取值为,; ,故的分布列为4 6 810 12 P 所求数学期望【点睛】本题考查了概率的计算,分布列和数学期望,意在考查学生的计算能力.20.已知函数(1)若在其定义域上是单调增函数,求实数的取值集合;(2)当时,函数在有零点,求的最大值【答案】(1);(2)最大值为【解析】【分析】(1)确定函数定义域,求导,导函数大于等于0恒成立,利用参数分离得到答案.(2)当时,代入函数求导得到函数的单调区间,依次判断每个区间的零点情况,综合得到答案.【详解】解:(1)的定义域为在上恒成立,即 即实数的取值集合是(2)时,即在区间和单调增,在区间上单调减.在最小值为且在上没有零点.要想函数在上有零点,并考虑到在区间上单调且上单减,只须且,易检验当时,且时均有,即函数在上有上有零点.的最大值为【点睛】本题考查了函数单调性,恒成立问题,参数分离法,零点问题,综合性强难度大,需要灵活运用导数各个知识点.21.已知抛物线的焦点为抛物线上的两动点,且,过两点分别作抛物线的切线,设其交点为.(1)证明:为定值;(2)设的面积为,写出的表达式,并求的最小值【答案】()定值为0;(2)S=,S取得最小值4【解析】分析:(1)设A(x1,y1),B(x2,y2),M(xo,yo),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得和,根据曲线4y=x2上任意一点斜率为y=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得的结果为0,进而判断出ABFM(2)利用(1)的结论,根据的关系式求得k和的关系式,进而求得弦长AB,可表示出ABM面积最后根据均值不等式求得S的范围,得到最小值详解:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x24kx4=0,判别式=16(k2+1)0,x1+x2=4k,x1x2=4.于是曲线4y=x2上任意一点斜率为y=,则易得切线AM,BM方程分别为y=()x1(xx1)+y1,y=()x2(xx2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo=2k,yo=1,即M(,1),从而=(,2),(x2x1,y2y1)=(x1+x2)(x2x1)2(y2y1)=(x22x12)2(x22x12)=0,(定值)命题得证()由()知在ABM中,FMAB,因而S=|AB|FM|,(x1,1y1)=(x2,y21),即,而4y1=x12,4y2=x22,则x22=,x12=4,|FM|=因为|AF|、|BF|分别等于A、B到抛物线准线y=1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=+2=于是S=|AB|FM|=,由2知S4,且当=1时,S取得最小值4点睛:本题求S的最值,运用了函数的方法,这种技巧在高中数学里是一种常用的技巧.所以本题先求出S=,再求函数的定义域,再利用基本不等式求函数的最值.(二)第21、22题为选做题22.在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值【答案】(1),;(2)或.【解析】【分析】(1)直接消参得到曲线C1的普通方程,利用极坐标和直角坐标互化的公式求曲线C2的直角坐标方程;(2)把曲线C1的标准参数方程代入曲线C2的直角坐标方程利用直线参数方程t的几何意义解答.【详解】C1的参数方程为消参得普通方程为xya10,C2极坐标方程为cos24cos0,两边同乘得2cos24cos20,得y24x所以曲线C2的直角坐标方程为y24x(2)曲线C1的参数方程可转化为(t为参数,aR),代入曲线C2:y24x,得14a0,由,得a0,设A,B对应的参数分别为t1,t2,由|PA|2|PB|得|t1|2|t2|,即t12t2或t12t2,当t12t2时,解得a;当t12t2时,解得a,综上,或【点睛】本题主要考查参数方程、极坐标方程和直角坐标方程的互化,考查直线参数方程t的几何意义解题,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.已知函数,.(1)当时,求不等式的解集;(2)若的解集包含,求实数的取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电缆电气知识培训内容课件
- 电磁铁课件教学课件
- 高级会计师培训课件
- 高空护栏安全知识培训课件
- 《刘胡兰》课件 统编版二年级语文上册
- 电焊机保养与维护
- TDHL-d10-Tergurid-d-sub-10-sub-生命科学试剂-MCE
- R-DS86760016-生命科学试剂-MCE
- 高温施工中暑培训课件
- 电焊工初级知识培训课件
- 《画电气原理图接线》课件
- 人美版美术七年级上册第一单元《第2课 品篆刻之美》课件
- 停水停电停氧的应急预案
- 带押过户合同模板
- 护理肝癌的疑难病例讨论
- 韬睿惠悦-知识管理KM-职涯地图方法论(P65)-2015
- 顺丰快递管理规章制度流程
- 企业治安防范教育培训
- 五年级冀教版数学下学期应用题专项水平练习题
- 92枪械课件教学课件
- 2024年首届全国标准化知识竞赛真题题库导出版-中(多选题部分)
评论
0/150
提交评论