22 直线与平面平行的判定2【精品教案】_第1页
22 直线与平面平行的判定2【精品教案】_第2页
22 直线与平面平行的判定2【精品教案】_第3页
22 直线与平面平行的判定2【精品教案】_第4页
22 直线与平面平行的判定2【精品教案】_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22直线与平面平行的判定2【精品教案】 2.2.1直线与平面平行的判定教学设计 一、教学内容人教版新教材高二数学第二册第二章第二节第1课 二、教材分析直线与平面问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。 通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理能力。 三、教学目标 1、知识与技能 (1)理解并掌握直线与平面平行的判定定理。 (2)进一步培养学生观察、发现的能力和空间想象能力。 2、情感态度与价值观 (1)让学生亲身经历数学研究过程,体验创造激情,享受成功喜悦,感受数学魅力。 (2)培养学生逻辑思维能力的同时,养成学生办事认真的习惯和实事求是的精神。 四、教学重、难点1重点直线和平面平行的判定定理的探索过程及应用。 2难点直线和平面平行的判定定理的探究发现及其应用。 五、教学理念学生是学习和发展的主体,教师是教学活动的组织者和引导者。 (1)指导学生合情推理法对于立体几何的学习,学生已初步入门,让学生主动去获取知识,发现问题。 (2)引导发现法为了把发现创造的机会还给学生,把成功的体验让给学生,采用引导发现法,可激发学生学习的积极性和创造性,分享探索知识的乐趣,使数学教学变成再发现、再创造的过程。 六、设计思路直线与平面的位置关系中,平行是一种非常重要的关系,应用较多,本节通过学习直线与平面平行的判定定理为判定直线与平面平行的位置关系提供依据;是学习后续知识的基础。 教学中要引导学生认识到,定理的实质是应用转化思想的过程,将立体几何的问题转化为平面几何的问题来解决,线面平行的问题转化为线线平行的问题,这种转化的数学思想方法在立体几何的证明和解题中体现得尤为明显。 七、教学过程(一)创设情景、揭示课题在生活中,我们注意到门扇的两边是平行的。 当门扇绕着一边转动时,另一边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象。 从中能悟出判定直线与平面平行的有效办法?(二)温故知新师直线与平面平行的定义是什么?生如果一条直线和一个平面没有公共点,那么我们就说这条直线与这个平面平行。 师应该注意这里所说的直线是向两方无限延伸的,平面是向四周无限延展的。 那么,直线与平面的位置关系有几种?生直线与平面的位置关系有三种直线在平面内有无数个公共点;直线与平面相交有且只有一个公共点;直线与平面平行没有公共点。 师我们把直线与平面相交或直线与平面平行的情况统称为直线在平面外。 今后凡谈到直线在平面外,则有两种情况直线与平面相交,直线与平面平行。 直线与平面的三种位置关系的图形语言、符号语言各是怎样的?谁来表示一下和书写一下?生(上讲台在黑板上画图)师好。 应该注意画直线在平面内时,要把直线画在表示平面的平行四边形内;画直线在平面外时,应把直线或它的一部分画在表示平面的平行四边形外。 生请问老师,直线a与平面?平行,按照其特征,符号语言能不能表示为a??/a?表师能!从理论上讲,这样表示完全正确。 但习惯上直线a与平面?平行,常用示。 (三)讲解新课直线a在平面?外,是不是能够断定/a?呢?生不能!直线a在平面?外包含两种情形一是a与?相交;二是a与?平行。 因此,由直线a在平面?外,不能断定/a?。 师直线与平面平行将如何判定呢?生根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点.师但是,直线无限延伸,平面无限延展,如何保证直线与平面有没有公共点呢?请同学们将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?生平行!师请大家看看这个图直线a与平面平行吗?若内有直线b与a平行,那么与a的位置关系如何?是否可以保证直线a与平面平行?生如果平面外一条直线与这个平面内的一条直线平行,那么这条直线与这个平面平行。 师回答很好!判定定理告诉我们直线与平面平行应具备几个条件?生三个。 分别是平面外的一条直线,平面内的一条直线,两直线平行!师完整了吗?还有没有补充的?或者是说有没有多余的?生都没有!师好!这三个条件缺一不可!那么谁来用符号语言表达出来?生(一位学生主动板书)?a?a b符号语言表示ab=aab师正确。 这个定理可以简述为“线线平行,则线面平行”。 不过要注意,前面的线线有什么区别?生一条在平面内,一条在平面外。 师很好!我们来看个例题!例1求证空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。 已知:如图,空间四边形ABCD中,E F分别是,AB AD的中点.求证:.EF/平面BCD。 证明:连接BD,因为,AEEB AFFB?所以BDEF/(三角形中位线定理)因为,EFBCD BDBCD?平面平面由直线与平面平行的判定定理得BCDEF平面/.该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。 (四)自主学习、发展思维练习教材第61页 1、2题让学生独立完成,教师检查、指导、讲评。 (五)归纳 1、同学们在运用该判定定理时应注意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论