




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 1回归分析的基本思想及其初步应用 四 高二数学选修2 3第三章统计案例 比 数学3 中 回归 增加的内容 数学 统计画散点图了解最小二乘法的思想求回归直线方程y bx a用回归直线方程解决应用问题 选修2 3 统计案例引入线性回归模型y bx a e了解模型中随机误差项e产生的原因了解相关指数r2和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果 复习回顾 2 数据点和它在回归直线上相应位置的差异是随机误差的效应 称为残差 3 对每名女大学生计算这个差异 然后分别将所得的值平方后加起来 用数学符号表示为 称为残差平方和 它代表了随机误差的效应 4 两个指标 1 类比样本方差估计总体方差的思想 可以用作为的估计量 越小 预报精度越高 2 我们可以用相关指数r2来刻画回归的效果 其计算公式是 r2 1 说明回归方程拟合的越好 r2 0 说明回归方程拟合的越差 在研究两个变量间的关系时 首先要根据散点图来粗略判断它们是否线性相关 是否可以用回归模型来拟合数据 5 残差分析与残差图的定义 然后 我们可以通过残差来判断模型拟合的效果 判断原始数据中是否存在可疑数据 这方面的分析工作称为残差分析 我们可以利用图形来分析残差特性 作图时纵坐标为残差 横坐标可以选为样本编号 或身高数据 或体重估计值等 这样作出的图形称为残差图 案例2一只红铃虫的产卵数y和温度x有关 现收集了7组观测数据列于表中 1 试建立产卵数y与温度x之间的回归方程 并预测温度为28oc时产卵数目 2 你所建立的模型中温度在多大程度上解释了产卵数的变化 非线性回归问题 假设线性回归方程为 bx a 选模型 由计算器得 线性回归方程为y 19 87x 463 73相关指数r2 r2 0 8642 0 7464 估计参数 解 选取气温为解释变量x 产卵数为预报变量y 所以 二次函数模型中温度解释了74 64 的产卵数变化 探索新知 方案1 分析和预测 当x 28时 y 19 87 28 463 73 93 一元线性模型 奇怪 93 66 模型不好 方案2 问题3 合作探究 t x2 二次函数模型 方案2解答 平方变换 令t x2 产卵数y和温度x之间二次函数模型y bx2 a就转化为产卵数y和温度的平方t之间线性回归模型y bt a 作散点图 并由计算器得 y和t之间的线性回归方程为y 0 367t 202 543 相关指数r2 0 802 将t x2代入线性回归方程得 y 0 367x2 202 543当x 28时 y 0 367 282 202 54 85 且r2 0 802 所以 二次函数模型中温度解释了80 2 的产卵数变化 产卵数 气温 指数函数模型 方案3 合作探究 对数 方案3解答 当x 28oc时 y 44 指数回归模型中温度解释了98 5 的产卵数的变化 由计算器得 z关于x的线性回归方程为 对数变换 在中两边取常用对数得 令 则就转换为z bx a 相关指数r2 0 98 最好的模型是哪个 线性模型 二次函数模型 指数函数模型 比一比 最好的模型是哪个 回归分析 二 则回归方程的残差计算公式分别为 由计算可得 因此模型 1 的拟合效果远远优于模型 2 总结 对于给定的样本点两个含有未知参数的模型 其中a和b都是未知参数 拟合效果比较的步骤为 1 分别建立对应于两个模型的回归方程与其中和分别是参数a和b的估计值 2 分别计算两个回归方程的残差平方和与 3 若则的效果比的好 反之 的效果不如的好 练习 为了研究某种细菌随时间x变化 繁殖的个数 收集数据如下 1 用天数作解释变量 繁殖个数作预报变量 作出这些数据的散点图 2 描述解释变量与预报变量之间的关系 3 计算残差 相关指数r2 解 1 散点图如右所示 2 由散点图看出样本点分布在一条指数函数y 的周围 于是令z lny 则 由计数器算得则有 3 即解释变量天数对预报变量繁殖细菌得个数解释了99 99 练习假设关于某设备的使用年限x和所支出的维修费用y 万元 有如下的统计资料 若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金融机构存款业务监管优化服务协议书
- 2025年个性化租赁汽车全面保障及快速响应服务合同
- 2025年安置区建设项目图纸审核与施工规范执行合同
- 2025年度城市老年中心专业康复治疗服务合作协议
- 2025年知识产权保护专利代理专项服务合同模板
- 2025年特色草种种植基地农业产业化发展合作合同
- 2025年绿色生态住宅开发项目营销策划代理合同
- 2025年度网络零售企业员工劳动合同模板
- 2025年跨境电商仓储物流租赁服务协议
- 2025年高标准学生公寓租赁及全面维修服务协议
- 精神活性物质所致精神障碍者的护理
- GB/T 4666-2009纺织品织物长度和幅宽的测定
- 开学第一课课件-外研版七年级英语上册
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- 水轮发电机的基本结构课件
- 《空气动力学》配套教学课件
- 技术交流-太钢不锈钢产品介绍
- 完整版医院体检报告范本
- 外研社Join-in-新版五年级上册全册教案
- 彭静山针灸秘验
- 《销售管理实务》ppt课件汇总(完整版)
评论
0/150
提交评论