




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Abaqus收敛培训教材教案Obtaining a Converged Solution with Abaqus Obtaining a Converged Solution with AbaqusObtaining a Converged Solution with AbaqusDay1?Lecture1Introduction toNonlinear FEA?Workshop1Nonlinear Spring?Lecture2Nonlinear FEAwith Abaqus/Standard?Lecture3Solution ofUnstable Problems?Workshop2Reinforced PlateUnder CompressiveLoads?Lecture4Why AbaqusFails toFind aConverged Solution?Workshop3Crimp FormingAnalysis?Lecture5Convergence Problems:Contact Simulations?Workshop4Contact:Beam Lift-Off?Workshop5Contact:Stabilization1Obtaining aConverged Solutionwith AbaqusDay2?Lecture6Convergence Problems:Element Behavior?Workshop6Element Selection?Lecture7Convergence Problems:Constraints andLoading?Lecture8Convergence Problems:Materials?Workshop7Limit LoadAnalysis?Workshop8Ball ImpactObtaining aConverged Solutionwith AbaqusLegal NoticesTheAbaqus Softwaredescribed in this documentation is availableonly underlicense fromDassault Systmes andits subsidiaryand may be usedor reproducedonly in aordance withthe termsof suchlicense.This documentationand thesoftware described in this documentation aresubject tochange withoutprior notice.Dassault Systmes andits subsidiariesshall notbe responsiblefor theconsequences of any errorsor omissionsthat mayappear inthisdocumentation.No partof thisdocumentation may be reproducedor distributedin anyform withoutprior writtenpermission of Dassault Systmes orits subsidiary.?Dassault Systmes,xx.Printed in the UnitedStates ofAmericaAbaqus,the3DS logo,SIMULIA andCATIA aretrademarks orregistered trademarks ofDassaultSystmes orits subsidiariesin theUS and/or othercountries.Other pany,product,and servicenames may be trademarksor servicemarksof their respectiveowners.For additionalinformation concerningtrademarks,copyrights,and licenses,see theLegal Noticesin theAbaqus6.10Release Notesand thenotices at:.simulia./products/products_legal.html.2Obtaining aConverged Solutionwith AbaqusRevisionStatusLecture15/10Updated for6.10Lecture25/10Updated for6.10Lecture35/10Updated for6.10Lecture45/10Updated for6.10Lecture55/10Updated for6.10Lecture65/10Updated for6.10Lecture75/10Updated for6.10Lecture85/10Updated for6.10Workshop15/10Updated for6.10Workshop25/10Updated for6.10Workshop35/10Updated for6.10Workshop45/10Updated for6.10Workshop55/10New for6.10Workshop65/10Updated for6.10Workshop75/10Updated for6.10Workshop85/10Updated for6.10Workshop Answers15/10Updated for6.10Workshop Answers45/10Updated for6.10Workshop Answers55/10New for6.10Workshop Answers65/10Updated for6.10Workshop Answers75/10Updated for6.10Workshop Answers85/10Updated for6.1034Notes5Notes6Introduction toNonlinear FEALecture1L1.2Obtaining aConverged Solutionwith AbaqusOverview?Why Use FEA to Solve Mechanics Problems?What is Convergence?When is a Problem Nonlinear?Properties of Linear Problems in Mechanics?Properties of Nonlinear Problems in Mechanics?Numerical Techniques for Solving Nonlinear Problems7Why Use FEA to Solve Mechanics Problems?L1.4Obtaining aConverged Solutionwith AbaqusWhyUse FEAto SolveMechanics Problems?Understand the behavior of a design?Finite element analysis(FEA)is auseful toolfor studyingthebehaviorof variousmechanical designs.Example:Burst loadanalysis of a micro-channel tube.Tube mustwithstand threetimes themaximum workingpressure.8L1.5Obtaining aConverged Solutionwith AbaqusWhyUse FEAto SolveMechanics Problems?AB2.01.51.00.50.00.5.10.15.x10-3XMIN1.463E-05XMAX1.354E-02YMIN1.562E+02YMAX1.725E+03x103Bulge Displacement(in)Internal Pressure(psi)A)Comparison ofMises stressin tubeB)Predicted burstpressure intubeOperating PressureOverload PressureL1.6Obtaining aConverged Solutionwith AbaqusWhyUse FEAto SolveMechanics Problems?Reduce productcosts anddevelopment time?FEA canreduce productcosts anddevelopment timeby:?Identifying formingproblems priorto toolingfabrication.?Minimizing toolingrework(see the following figure).?Reducing overallprototyping effortwhile identifyingshortings in the design.?Minimizing theamount ofmaterial usedduring fabrication.9L1.7Obtaining aConverged Solutionwith AbaqusWhyUse FEAto SolveMechanics Problems?Incorporating FEAin developmentcyclestamp pre-prototype partsinitialdesignfabricate“soft”toolingnumerical simulationdesign modificationsrework softtoolingstamp productionpartsrework hardtoolingstamp prototypepartsfabricate“hard”toolingnumerical simulationL1.8Obtaining aConverged Solutionwith AbaqusWhyUseFEAtoSolveMechanicsProblems?Only wayto getan answer?FEA can be usedto predictthe abilityof adesign to withstand extreme loading conditionsthat cannotbe duplicatedin anexperiment.?Hopefully theseextreme loadingconditions will be consideredearly in the design process.?An exampleof such a finiteelementanalysis is the simulation of the abilityof anoffshore platformtowithstand the forcesproduced bya hundred-year storm.10L1.9Obtaining aConverged Solutionwith AbaqusWhyUseFEAtoSolveMechanicsProblems?Unfortunately someextremeloadingconditions arenever imaginedduring thedesignprocess.?Consider thecase of the bucklingof asolar panelunder asevere thermaltransient.?The panelnever returnedto itsoriginal configurationwhen thenormal operatingtemperature wasrestored,rendering ituseless.?It wouldhave beenextremely difficultto simulatethis loadingon the structure,which isover120-inches long,in alaboratory;FEA was the onlytool availableto investigatethe proposeddesignmodificationsfor subsequentpanels thatwere produced.What is Convergence?11L1.11Obtaining aConverged Solutionwith AbaqusWhat is Convergence?In FEA“convergence”can implymultiple meanings?Mesh convergence?Time integrationauracy?Convergence ofnonlinear solution procedure?Solution auracyL1.12Obtaining aConverged Solutionwith AbaqusWhat is Convergence?Mesh convergence?Increasing the number ofelements in the modelwill causethe solution to approachthe analyticalsolution of the equationsthat governthe response.?Applies bothto linearand nonlinear analysis.?Applies forh-based elementtechnology used in Abaqus.?At somepoint furthermesh refinementyields littleor nochange insolution,and the mesh is assumed tohave“converged.”12L1.13Obtaining aConverged Solutionwith AbaqusWhatis Convergence?A fewexceptions to themeshconvergence rule:?Singular solutions(e.g.,fracture mechanics).?Localization problemswhere materialdamage canaumulate inparticular regionsof the model.?Abaqus providesspecial techniquesto reducemesh dependenceof localizationeffects forsoftening materials,such asconcrete.Lodygowski,T.,“Shear Bandsand Failurein Adiabaticand FractureTests,”ABAQUS UsersConference,1996,pp.523-536.L1.14Obtaining aConverged Solutionwith AbaqusWhatis Convergence?Abaqus providestools toevaluate meshconvergence?Strain jumpsat nodes(SJP)written toprinted output(.dat)and results(.fil)files?Contouring optionsin Abaqus/Viewer:?Quilt plots?Discontinuity plots?Error estimatesand adaptiveremeshing?Not discussedhere;see AdaptiveRemeshing with Abaqus/Standard lecturenotes.13L1.15Obtaining aConverged Solutionwith AbaqusWhatis Convergence?Mesh convergenceexample:load bearingbracket213fixedTwisted about the1-directionpulledL1.16Obtaining aConverged Solutionwith AbaqusWhatis Convergence?Discontinuity parisonbetween coarseand refinedmeshesDiscontinuities inmaximum principalstressDiscontinuity85%of averagedstressDiscontinuity0vRealNonlinearEquilibrium PDEsFvNumericalTechniques forSolving NonlinearProblems24L1.37Obtaining aConverged Solutionwith AbaqusNumericalTechniques forSolving NonlinearProblems?For nonlinear,static,structural mechanicsproblems,the system of equationsis thestatement ofstatic equilibrium:P I=0,where?Many differenttechniques havebeen proposedfor solvingsuch nonlinearsystems of equations.?In allcases thetotal appliedload is broken downinto smallincrements.?An approximate solution isobtained foreachload increment.?It islikely thatseveral iterations will beneeded toobtain an approximate solutionthat is sufficiently aurate.TVdV I.L1.38Obtaining aConverged Solutionwith AbaqusNumericalTechniques forSolving NonlinearProblems?Two ofthe morerobust iterative methods are the?Newton-Raphson techniqueand the?quasi-Newton technique.?Both areincremental/iterativemethods.?Both areavailable in Abaqus/Standard.25L1.39Obtaining aConverged Solutionwith AbaqusNumericalTechniques forSolving NonlinearProblems?Newton-Raphson technique?With thistechnique,which isdescribedindetail inLecture2,each iterationinvolves theformulation andsolution oflinearized equilibrium equations.?Each iterationconsists ofdefining theterms in the equilibrium equations(forming the stiffness matrix)and solvingthe resultingsystem.?The solutionfrom an iteration isdeemed sufficientlyaurate ifthe errorin theequilibriumequationis smallerthan certaintolerances:tolerances P I R.L1.40Obtaining aConverged Solutionwith AbaqusNumericalTechniques forSolving NonlinearProblems?Quasi-Newton method?The quasi-Newton methoddiffers fromthe full Newton-Raphson methodin howfrequently thestiffness matrix is recalculated.?In thefullNewton-Raphson methodthestiffnessis recalculatedin everyiteration.?In the quasi-Newton methodit is not recalculatedin everyiteration.?Thus,the quasi-Newton methodcan providesubstantial savingsof putationaleffort ifthe numberof iterationsdoes notincrease.?In Abaqusthequasi-Newton methodreforms thestiffness matrixevery eightiterations.?This defaultvalue canbe modifiedbythe user.26L1.41Obtaining aConverged Solutionwith AbaqusNumericalTechniques forSolving NonlinearProblems?The quasi-Newton methodis mostsuessful whenthe systemofequationsis largeandthestiffness matrixis notchanging muchfrom iterationto iteration.?This canbe thecase in a dynamic analysis usingimplicit timeintegration orinasmall-displacement analysiswith localplasticity.?The quasi-Newton methodin Abaqus/Standard hasthefollowinglimitations:?It cannotbe usedwith unsymmetricproblems,which includesfully coupledtemperature-displacement analysesand problemswith highfriction coefficients.L1.42Obtaining aConverged Solutionwith AbaqusNumericalTechniquesforSolvingNonlinearProblems?Usage:*SOLUTION TECHNIQUE,TYPE=QUASI-NEWTON2728Notes29Notes30Nonlinear FEAwith Abaqus/StandardLecture2L2.2Obtaining aConverged Solutionwith AbaqusOverview?Equilibrium Revisited?Nonlinear Solution Methods?Abaqus/Standard ConvergenceCriteria:An Overview?Automatic TimeIncrementation?Contact Convergence31Equilibrium RevisitedL2.4Obtaining aConverged Solutionwith AbaqusEquilibriumRevisited?The basicstatement ofstatic equilibriumis that the internal(I)and external(P)forces shouldbalance:P I0.32L2.5Obtaining aConverged Solutionwith AbaqusEquilibriumRevisited?In a nonlinear problemtheinternal forces inthe model,I(u,t,f i,),maybea nonlinear function of:u(displacement)(strain)t(time)(temperature)fi(user-defined fieldvariables)Other variablesThehistoryofany oftheabovevariables?In anonlinear problemtheexternal forces inthe model,P,may alsobeanonlinearfunction of suchindependent variablesas uandt.Nonlinear Solution Methods33L2.7Obtaining aConverged Solutionwith AbaqusNonlinear Solution Methods?Consider ananalysis inwhich youknow thetotal loadapplied andthe(initial)stiffness ofthestructure.?The goalis to find the final displacement.?In alinearanalysis thefinaldisplacement couldbe foundwith onecalculation.?In anonlinear problemthis isnot possiblebecause thestructures stiffnesschanges asit deforms.LoadPu?DisplacementNonlinear forcevs.displacement curveP0u0L2.8Obtaining aConverged Solutionwith AbaqusNonlinear Solution Methods?The solution of suchanonlinear problem requiresan incremental/iterative technique.?The solutionprovided withsuchatechnique is an approximationoftheactual solution to thenonlinearproblem:?There isgenerally noexact solutionto theseequations so?Abaqus solvesthe equationiteratively?by usingthe Newton-Raphson method?to find anapproximatesolution?that minimizesthe residuals!0.P I34L2.9Obtaining aConverged Solutionwith AbaqusNonlinear Solution Methods?Using Abaqus?The loadhistory versustime isdefined as a sequenceof steps.?Each step is brokenup intoa sequenceof time increments.?You specifya guessfor the initial timeincrement*statict-initial,t-step?Abaqus determines all othertimeincrement sizes usingits automatictime incrementationalgorithm.?At the endof each incrementthe currentload magnitudeis calculatedby Abaqusasafunctionoftime usingthe conceptof loada
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 魏振赢民法课件
- 高铁消防知识培训课件
- 济宁市2024-2025学年九年级下学期语文月考测试试卷
- 集安市2025-2026学年八年级上学期语文期中模拟试卷
- 高速铁路线路课件
- 电表读数课件
- 高血压药物课件
- 江西省鹰潭市2024-2025学年高一下学期期末考试 思想政治试卷
- 消化系统常用药鲁临2讲课文档
- 电网供配电知识培训内容课件
- 语音发声(第四版)语音篇
- 湖南美术出版社小学三年级上册书法练习指导教案
- 浙江省杭州市西湖区2023-2024学年数学三年级第一学期期末学业质量监测试题含答案
- 院内感染预防控制
- 人教版小学数学知识点总结(1-6年级全)
- 决定你一生成就的21个信念及要点
- 五年级上册数学教案-练习一-北师大版
- 2023年山西晋中日报社招考聘用笔试题库含答案解析
- 运动营养学概述
- 成长型思维课件完整版
- 浙教版数学七年级上册全册优质课件
评论
0/150
提交评论