1完整的论文 先看看 会议筹备的多目标混合整数线性规划.doc_第1页
1完整的论文 先看看 会议筹备的多目标混合整数线性规划.doc_第2页
1完整的论文 先看看 会议筹备的多目标混合整数线性规划.doc_第3页
1完整的论文 先看看 会议筹备的多目标混合整数线性规划.doc_第4页
1完整的论文 先看看 会议筹备的多目标混合整数线性规划.doc_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2009高教社杯全国大学生数学建模竞赛会议筹备的目标混合整数线性规划模型 四川信息职业技术学院指导老师:数学建模教练组 参赛队员:张 波 张山川 刘 健 2009年9月14日2009高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写): D 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 四川信息职业技术学院 参赛队员 (打印并签名) :1. 张 波 2. 张山川 3. 刘 健 指导教师或指导教师组负责人 (打印并签名): 宋秀英 日期: 2009 年 9 月 14 日赛区评阅编号(由赛区组委会评阅前进行编号):2009高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):会议筹备的多目标混合整数线性规划模型摘要本文讨论了筹备会议时合理预订宾馆客房、租借会议室、租用客车问题。以最小化与会代表支付费用,最小化筹备方支付费用,最小化预定宾馆数量,最小化预定宾馆之间的距离,以入住人数约束,最大可订客房数约束,选择宾馆入住的条件约束,会议选择的约束,租用客车满足要求约束,建立了会议筹备中预定客房、租借会议室、租用客车问题的多目标混合整数线性规划模型,并分别通过单目标优化和多目标分层序列优化方法,解决了这一复杂的问题。首先整理题目所给出的数据。我们建立了灰色预测模型对本届与会人数进行预测,然后对数据取整。用MATLAB软件编程计算得出本届与会率为84.468%,与会总人数为644人。其次,建立了4个目标函数,即与会人员客房花费最小、筹备方支出费用最少、总入住宾馆最少、宾馆间距离最短。针对第一个目标,我们根据与会人员的住房要求建立与会人员客房花费最少的模型;第二个目标,通过对筹备方的租借会议室和租车的经费求取最小值建立模型,这里我们对开会的形式做了假设,即上下午各安排6个会议室,各位与会代表将分别参加上下午的会议,且只能上午和下午的任意一个会议;第三个目标我们取预定宾馆数最小;第四个目标取预定宾馆间的欧几里得距离和最小。最后通过单目标优化,多目标分层求解的方法对该多目标规划进行简化,运用LINGO编程求解得到:1、筹备组选择租赁、号宾馆;2、宾馆的客房和会议室租赁方案为:号宾馆所有房间全部租赁,并租1间200人的会议室;号宾馆的普通双标间、商务双标间、豪华双标间A、豪华双标间B分别租赁50、23、30、13间,并租3间180人的会议室;号宾馆的普通双标间、商务双标间、普通单人间分别租赁50、24、27间,并租1间150人的会议室;号宾馆的普通双标间、商务单人间、商务套房(1床)分别租赁50、40、324间,并租1间200人的会议室;3、筹备组可以不用租赁客车来接送与会人员,从而与会人员直接在下榻的宾馆租接的会议室开会。本文主要研究了会议筹备的规划问题。主要优点是:本题通过建立多目标混合线性整数规划模型来建模求解。但本文将问题分解,对模型中的目标函数和约束条件分别建立了相应的模型。思路清晰,且使得最终优化时能得到满意的最佳会议筹备方案设计。主要缺点是:因专业知识匮乏,数据资料的不完整,我们做了较合理的假设,这可能会造成小部分结果的细微偏差,但不影响整体结果。关键词关键词必须是算法、模型。:会议筹备;多目标混合整数线性规划;灰色预测;单目标优化;分层序列算法;一、问题的提出某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。 筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号至表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。根据这届会议代表回执整理出来的有关住房的信息见附表2。从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。附表2,3都可以作为预订宾馆客房的参考。需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。二、模型假设1、假设题目所提供所有数据真实可信。2、假设每个宾馆能提供足量的房间。3、假设宾馆所住代表尽量参加该宾馆的分组会议。4、假设每个代表上午下午都参加分组会,并且每半天只能参加一个组的会议。5、假设车辆租借只能满足一个宾馆的代表乘坐(不能中途上客,但可以将不同代表送至不同的宾馆,费用不变)。三、符号说明及概念引入3.1 概念引入(1)宾馆客房与会议室的编号:为了方便论文的叙述,我们对每个宾馆的客房与会议室进行编号为1、2、3、4,如果不足4个即将其参数定义为0即可。(2)住房档次要求的编号:为了方便叙述,我们将合住1、合住2、合住3、独住1、独住2、独住3分别标号为1档次房、2档次房6档次房。(3)对性别进行编号:记男性为0,女性为1。3.2 符号说明-表示所订宾馆客房提供给档次性别的数量-表示从宾馆到宾馆会议室参加会议的人数-表示所订宾馆会议室数量-表示宾馆客房的费用-表示宾馆会议室的费用-表示宾馆房间的最大订房数-表示宾馆会议室的最大预订数-表示宾馆会议室的最大容纳人数、-分别表示租800、700、600三种类型客车数量-表示性别住档次房的实际人数-表示宾馆客房是否满足参会代表的档次住房要求(为0,1变量,0表示不满足,1表示满足)-表示宾馆是否有人入住(为0,1变量,0表示未入住,1表示入住)-表示宾馆到宾馆的距离四、问题分析题目要求从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。“方便”、“代表满意”以及“空房问题”等均为模糊概念。对于空房问题,主要是由于代表真实到会人数无法确定所造,在此数据信息有限,只能考虑通过过去4届的历史数据对到会人数进行预测,以便尽量减少空房数和预订客房数量不足情况。对于问题中对客房、会议室等安排,直接采用所预测的到会人数进行计算分析。对于“方便”这一概念,我通过对宾馆数以及所订宾馆之间的距离尽量短来进行刻画。由于数据有限,代表的满意度问题只能根据代表所需自付的房费来进行刻画,而又由于每个代表有自己的要求价格区间,所以我们将满意度定义为在满意要求的情况下价格越低满意度越高。对于会议筹备组来说,在筹备整个会议时,既要考虑到与会代表的意愿,又要使开支最小。在充分满足参会代表的意愿的前提下,要想开支尽可能的小。而筹备组的经费主要由会议室租借费与汽车租借费用组成,所以应该尽量使得费用总和最少。对于乘车问题,在题目中未给出详细说明,所以我们只能假设车辆的租借是只能服务于单个宾馆,不能出现一辆车反复运送乘客的情况。综上分析可知,问题即转化为一个数据预测问题和以顾客满意度最大、费用最小、宾馆数尽量少、宾馆距离尽量靠近的一个多目标优化问题。五、数据处理根据附表3以往四届会议代表回执和与会情况可转化为表1:表1与会情况第一届第二届第三届第四届回执人数315356408711与会人数283310362602与会率0.8984130.8707870.8872550.846695根据题目资料,会议筹备组经过实地考察,筛选出10家宾馆作为备选,已知了相邻宾馆间的距离,如(附录【图】)所示,但没有给出10家宾馆间的相互距离,为了满足模型构建的需要,这里假设下图中纵向道路宽度为200米,横向道路宽度为150米,两宾馆间的相互距离采用欧几里德距离,经过数据处理,得到10家宾馆间的相互距离如表2所示。表2 宾馆相互距离表015090065060060030050065013001500750500750750450650800145090075002501500150012001000115022006505002500125012509501150130019506007501500125006003005006501300600750150012506000300500350700300450120095030030002003501000500650100011505005002000150120065080011501300650350350150085013001450220019501300700100012008500附表2中给出了代表回执中有关住房要求的信息,结合附表1给出的10家备选宾馆的有关数据,设和分别代表宾馆客房是否满足男性(女性)参会代表的档次住房要求,若满足,取值为1,否则为0;该项数据统计情况如表3所示。表3 R系数矩阵宾馆客房规格男性参与代表女性参会代表合住1合住2合住3独住1独住2独住3合住1合住2合住3独住1独住2独住3普通双标间010010010010商务双标间001001001001普通单人间000010000010商务单人间000001000001普通双标间100100100100商务双标间100100100100豪华双标间A010010010010豪华双标间B010010010010普通双标间100100100100商务双标间010010010010普通单人间000100000100普通双标间100100100100商务双标间010010010010普通双标间A100100100100普通双标间B100100100100豪华双标间010010010010普通单人间000100000100普通双标间010010010010商务单人间000010000010精品双人间001001001001普通双标间100100100100商务单人间000100000100商务套房(1床)000001000001普通双标间A010010010010普通双标间B100100100100高级单人间000010000010普通双人间001001001001普通单人间000001000001豪华双人间001001001001豪华单人间000001000001经济标准房(2床)001001001001标准房(2床)001001001001六、模型的建立6.1 预测模型的建立与求解从表1可以看出以往四届参加会议人员虽然在增加,但与会率却在减小。针对与会率数据量少,在数据波动不大的情况下,我们使用灰色GM(1,1)模型预测。(1)GM(1,1)模型的建立:设时间序列,对各项值进行累加,得到新的累加数新的序列:那么GM(1,1)模型相应微分方程为:对微分方程求解,即可得预测模型:(2)GM(1,1)模型求解使用MATLAB 软件编程,预测出第五届会议代表的到会率为84.468%,百分绝对误差为0.011842%;由附表2,本届会议的代表回执中有关住房要求的信息,按照预测出第五届会议代表的与会比率,得到实际与会人员的住房要求,采用Excel中的ROUNDUP函数来近似数据取整,即不管尾数多大,均进位取整,如表4所示:表4 本届会议的代表与会人员有关住房要求的信息(单位:人)合住1合住2合住3独住1独住2独住3男1318828915835女664115502417(说明:表头第一行中的数字1、2、3分别指每天每间120160元、161200元、201300元,三种不同价格的房间。合住是指要求两人合住一间。独住是指可安排单人间,或一人单独住一个双人间。)计算得出本届会议与会人员的总数为A:A=131+88+28+91+58+35+66+41+15+50+24+17=644人,其中男性431人,女性213人。6.2 优化模型的建立6.2.1目标函数的确定筹备方为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。从经济方面考虑,筹备方花费越少越好。(1) 目标一:代表满意度代表满意度主要根据代表所要求的订房价格区间越便宜越好满意度评价函数其中令f(120)=1,f(160)=0.1,f(161)=1,f(200)=0.1,f(201)=1,f(300)=0求得所以满意度评价函数为:满意度最小:(2)目标二:筹备费用会议期间一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。由于事先无法知道哪些代表准备参加哪个分组会,筹备组要向汽车租赁公司租用客车接送代表。那么,需要筹备组支付的费用就分为租借会议室的费用,和租赁客车的费用(客车车型有三种用表示)。对于筹备方来说,租借会议室和租赁客车的费用越少越好,即: (3)目标三:宾馆数量选择对于宾馆的选择只有两种(选与不选),所以在引进一个0-1函数,。选择的宾馆数量越少,筹备方在安排客车接送代表时,所花的费用就越小。那么就要求宾馆的数量越少越好,即:(4)目标四:宾馆之间的距离 在选择宾馆的时候,考虑到交通的方便性,就需要选择的宾馆之间的距离比较近。设: 表示宾馆到宾馆的距离。选择的宾馆与宾馆之间的距离越近越好,即:6.2.2约束条件的确定(1)入住人数的约束:要求必须把所有的代表都安排进宾馆,那么安排入住人数要大于等于参会代表总人数。引入一个0-1函数,来确定某位代表是否入住宾馆客房。设:,则:其中,表示住档次住房的实际人数。(2) 入住约束: 由于合住者入住有可能落单,但在此我们忽略其影响,所以入住人数等于参会人数: 其中,表示从宾馆到宾馆会议室参加会议的人数。(3) 最大可订客房数约束:筹备方在选订客房时,不可能超过宾馆所能提供的客房数量,即:其中,表示宾馆房间的最大订房数。(4)会议室选择的约束:进入会议室的代表人数,不得超过会议室的容量,即:其中,表示宾馆会议室的最大容纳人数,表示所订宾馆会议室数量。(5) 会议室数量约束: 会议期间一天的上下午各安排6个分组会议,那就在有代表下榻的宾馆中租借6个会议室。 (6)在租借会议室时,同样要注意宾馆所能提供的数量,则: 其中,表示所订宾馆会议室数量,表示宾馆会议室的最大预订数。(7)租车满足要求约束:其中,表示从宾馆到宾馆会议室参加会议的人数,、分别表示租800、700、600三种类型客车数量。(8)会议室必须要代表下榻的某几个宾馆租借(9)约束为0,1变量,且满足:(10)非负整数约束人数、订房间数、订会议室数和租车数均为非负整数、均为非负整数综上,最终模型建立如下: 、均为非负整数七、模型求解7.1模型求解分析显然,上面所建模型中会议室必须要代表下榻的某几个宾馆租借的约束为一个非线性约束,但为了计算方便,在此采用线性化处理,将约束条件适当放宽:以上约束改为线性约束如下: 7.2 模型求解首先,在无法得知目标之间的相对重要性权重,而且四个目标采用分层求解效果不好的情况下,我们采用对每个目标进行单独优化后,得到每种目标下的优化方案,供决策者参考。1、以与会代表支付费用C为目标函数,约束条件见前面模型,进行单目标优化,利用LINGO软件编程(程序见附录【2】的model 1-1)进行求解,解得结果如表5所示:表5 目标函数C的优化结果宾馆房间宾馆会议室租车45座36座33座50303020010022050233013111010050242701000210504024000101112、以会议筹备方支付费用F为目标函数,约束条件见前面模型,进行单目标优化,利用LINGO软件编程(程序见附录2的model 1-2)进行求解,解得结果如表6所示:表6 目标函数F的优化结果宾馆房间宾馆会议室租车45座36座33座50283020100000050243014003000049242700010000504026000100003、以预定宾馆数G为目标函数,约束条件见前面模型,进行单目标优化,利用LINGO软件编程(程序见附录【2】的model 1-3)进行求解,解得结果如表7所示:表7 目标函数G的优化结果宾馆房间宾馆会议室租车45座36座33座22303019000021050353035111010035354001100000503930010000004、以最小化预定宾馆间距离D为目标函数,约束条件见前面模型,进行单目标优化,利用LINGO软件编程(程序见附录【2】的model 1-4)进行求解,解得结果如表8所示:表8 目标函数D的优化结果宾馆房间宾馆会议室租车45座36座33座5030302002004005023301301005005024270000020050402400300000根据计算结果,宾馆数量和宾馆距离在每个目标下变化不大,可对参会代表预定客房费用最小和会议筹备方支付费用最小进行双目标优化,为了避免目标函数四的非线性使得模型求解困难,这里把目标函数三,即最小预定宾馆数4作为约束条件,这时,我们利用分层序列算法来选取最优解。7.3 与会代表支付费用最小与会议筹备支付费用最小的分层序列算法求解根据每个单目标优化结果,为了简化计算,我们可以只求C和F两个目标,对这两个目标我们可以采取分层序列法,首先设min C和min F分别代表第1个和第2个目标在各自单目标优化时的最优解;首先只求C,并将F的最优解min F作为约束放在约束条件里求解;类似可求解F,并将目标C的最优解min C放在约束条件里求解。即分别求解以下两个规划:子规划一: 子规划二: 对以上的两个单目标子规划,进行了逐一的求解,最后对其结果进行分析得出一下结果如表9所示:表9 分层序列求解结果CFGDC81050440043750F81050440043750以C为目标函数,把F目标的最优目标函数值作为约束,见子规划一,利用LINGO对优化求解模型(程序见附录3的model 2-1),得到到优化结果表10所示:表10 以C为目标函数,以F为约束条件优化结果宾馆房间宾馆会议室租车45座36座33座50303020100000050233013003000050242700010000504032400010000以F为目标函数,以把C目标的最优目标函数值作为约束,见子规划二,利用LINGO对优化求解模型(程序见附录3的model 2-2),得到到优化结果表11所示:表11 以F为目标函数,以C为约束条件宾馆房间宾馆会议室租车45座36座33座50303020100000050233013003000050242700010000504032400010000综上所述,两次的运行结果是一样的,所以我们的出以下结论:1、筹备组选择租赁、号宾馆;2、号宾馆所有房间全部租赁,并租1间200人的会议室;号宾馆的普通双标间、商务双标间、豪华双标间A、豪华双标间B分别租赁50、23、30、13间,并租3间45人的会议室;号宾馆的房间全部租赁,并租1间150人的会议室;号宾馆的普通双标间、商务单人间、商务套房(1床)分别租赁50、40、24间,并租1间200人的会议室;3、筹备组可以不用租赁客车来接送与会人员;4、男女性与会代表客房安排分别如表12和表13所示:表12 男性与会代表客房安排合住14917合住22717合住314独住11121127229独住2230224独住31124表13 女性与会代表客房安排合住1231合住221合住38独住13911独住21113独住3897.4 结果分析通过上述的计算,求解结果可以看出宾馆数量和宾馆距离在每个目标下变化不大,求解得到的宾馆为、,其中宾馆、在单目标函数C与F的变化下,宾馆选择发生变化。出现筹备组可以不用租赁客车来接送与会人员的结果,主要是由于题目要求筹备组租借会议室尽量在代表下榻的某几个宾馆、宾馆数量尽可能少、宾馆间距离尽可能近、筹备方经费尽可能少,在这样的条件约束下不用租赁客车来接送与会人员成为最优结果。根据每个单目标优化结果,为了简化计算,只对C和F这两个目标采用分层序列算法求得一样的宾馆选择为、,。优越性在于将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。经过计算求解出这两组最优解是一样的,从而得出最优解。八、模型的评价与改进8.1 模型的评价本文主要研究了会议筹备的规划问题。文章的主要优点是:1、本题通过建立混合线性整数规划模型来建模求解。但本文将问题分解,对模型中的目标函数和约束条件分别建立了相应的模型。思路清晰,且使得最终优化时能得到满意的最佳会议筹备方案设计。2、我们在模型求解过程中,采用多目标转化为单目标的求解方法,充分考虑到各个目标的在模型求解上的影响力大小。3、文章考虑到模型的实际应用,对问题作出了更深更现实的讨论。能让筹备方确定最佳筹备方案,给筹备方带来实际的经济效益。主要缺点是:题目所给出数据资料不完整,为解决具体问题上所做出的假设,可能会造成小部分结果的细微偏差,但不影响整体结果。8.2 模型的改进在模型中,我们只能通过仅有的4届数据来预测到会人数,而我们可以改进引入到会人数为随机变量,建立出同时考虑空房与住房不够的情况下的优化模型。另一方面,在计算中由于不知道每个代表参加哪个分组会,所以我们假设了,代表参会都采用尽量就近参会原则,但并不能满足实际需求。所以考虑引入参数表示不同人将参加的分组会议,以便求解结论更加符号现实情况。九、参考文献1 姜启源等编,数学模型M(第3版),北京:高等教育出版社, 2003.8; 2 韩中庚编,数学建模方法及其应用M,北京:高等教育出版社,2005.6;3 姜启源等编,大学数学实验M,北京:清华大学出版社,2005.2;4运筹学教材编写组编,运筹学(第三版),北京:清华大学出版社,2005.6;5 “采用Excel中的ROUNDUP函数”摘自于WPSoffice中文办公软件专家,/knowledge/knowledgeshow/tid-21828847.htm,2009年9月12日;6谢金星等编,优化建模与LINDO/LINGO软件,北京:清华大学出版社,2005.7。十、附录附录【图】(与间距300米) (与间距300米) (与间距300米) (与间距300米) (与间距300米) (与间距300米) (与间距300米) 1000500300150200300(与间距300米) (与间距300米) (与间距300米) 300700150图1 宾馆位置示意图附录【1】 灰色模型matlab 程序function =greymodel(y)% 本程序主要用来计算根据灰色理论建立的模型的预测值。% 应用的数学模型是 GM(1,1)。% 原始数据的处理方法是一次累加法。y=input(请输入数据 );n=length(y);yy=ones(n,1);yy(1)=y(1);for i=2:n yy(i)=yy(i-1)+y(i);endB=ones(n-1,2);for i=1:(n-1) B(i,1)=-(yy(i)+yy(i+1)/2; B(i,2)=1;endBT=B;for j=1:n-1 YN(j)=y(j+1);endYN=YN;A=inv(BT*B)*BT*YN;a=A(1);u=A(2);t=u/a;i=1:n+2;yys(i+1)=(y(1)-t).*exp(-a.*i)+t;yys(1)=y(1);for j=n+2:-1:2 ys(j)=yys(j)-yys(j-1);endx=1:n;xs=2:n+2;yn=ys(2:n+2);plot(x,y,r,xs,yn,*-b);det=0;for i=2:n det=det+abs(yn(i)-y(i);enddet=det/(n-1);disp(百分绝对误差为:,num2str(det),%);disp(下个拟合值为 ,num2str(ys(n+1);disp(再下个拟合值为,num2str(ys(n+2);附录【2】model 1-1源程序model:sets:AA/1.10/:t,m1,m2,m3;BB/1.4/;CC/1.6/:q0,q1;DD(AA,BB):a,c,f,b,d,z,ff,NN;EE(CC,AA,BB):x0,x1;AAB(AA,AA,BB):y;FFF(AA,AA):l;BBB/1.40/;EEEE(CC,BBB):r0,r1;endsetsdata:q0=1328828915835;q1=66 4216502417;a=180 220 180220140 160 180200150 180 1500140 200 00140 160 2000160 170 180220150 160 3000180 160 1800260 260 280280260 280 00;c=503030205035303550242705045003535400404030305040300404045030303030554500;f=20015060013018045302001001506015050001501805001601800014060200016013000160120200018014000;b010001500300 3001200800 1000320900300 0 010001500500 010001200 0 0800300 100001000800 0 01300800 1200015001000 0 0;d=1220213312132300213011002310120012101200;r0=00001100100010001100000010000100000000001000001101000100001001000000100000000000010000000000000000000001000000001010110000001100101010001100100011000100000000001010001101000100001001100000101000000000010100000000000000000001001000001111110 0;r1=00001100100010001100000010000100000000001000001101000100001001000000100000000000010000000000000000000001000000001010110000001100101010001100100011000100000000001010001101000100001001100000101000000000010100000000000000000001001000001111110 0;l=015090065060060030050065013001500750500750750450650800145090075002501500150012001000115022006505002500125012509501150130019506007501500125006003005006501300600750150012506000300500350700300450120095030030002003501000500650100011505005002000150120065080011501300650350350150085013001450220019501300700100012008500;enddatamin=sum(CC(k):sum(AA(i):sum(BB(j):a(i,j)*(x0(k,i,j)+x1(k,i,j);for(CC(k)|k#ge#1 #and# k#le#3:sum(AA(i):sum(BB(j):2*r0(k,(4*(i-1)+j)*x0(k,i,j)=q0(k);for(CC(k)|k#ge#4 #and# k#le#6:sum(AA(i):sum(BB(j):r0(k,(4*(i-1)+j)*x0(k,i,j)=q0(k);for(CC(k)|k#ge#1 #and# k#le#3:sum(AA(i):sum(BB(j):2*r1(k,(4*(i-1)+j)*x1(k,i,j)=q1(k);for(CC(k)|k#ge#4 #and# k#le#6:sum(AA(i):sum(BB(j):r1(k,(4*(i-1)+j)*x1(k,i,j)=q1(k);for(AA(i):for(BB(j):sum(CC(k):x0(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论