




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 2 2事件的相互独立性 一 高二数学选修2 3 德清高级中学高二数学备课组 执教者沈雪清 2 2 2事件的相互独立性 一 高二数学选修2 3 德清高级中学高二数学备课组 执教者沈雪清 俗话说 三个臭皮匠抵个诸葛亮 我们是如何来理解这句话的 那么 臭皮匠联队赢得比赛的概率为 因此 合三个臭皮匠之力 把握就大过诸葛亮了 歪理 设事件a 老大解出问题 事件b 老二解出问题 事件c 老三解出问题 事件d 诸葛亮解出问题则 你认同以上的观点吗 事件的概率不可能大于1 公式运用的前提 事件a b c彼此互斥 什么叫做互斥事件 什么叫做对立事件 两个互斥事件a b有一个发生的概率公式是什么 不可能同时发生的两个事件叫做互斥事件 如果两个互斥事件有一个发生时另一个必不发生 这样的两个互斥事件叫对立事件 p a b p a b p a p 1 复习回顾 4 条件概率的概念 5 条件概率计算公式 复习回顾 设事件a和事件b 且p a 0 在已知事件a发生的条件下事件b发生的概率 叫做条件概率 记作p b a 思考与探究 思考1 三张奖券有一张可以中奖 现由三名同学依次无放回地抽取 问 最后一名去抽的同学的中奖概率会受到第一位同学是否中奖的影响吗 设a为事件 第一位同学没有中奖 答 事件a的发生会影响事件b发生的概率 思考与探究 思考1 三张奖券有一张可以中奖 现由三名同学依次有放回地抽取 问 最后一名去抽的同学的中奖概率会受到第一位同学是否中奖的影响吗 设a为事件 第一位同学没有中奖 答 事件a的发生不会影响事件b发生的概率 相互独立的概念 1 定义法 p ab p a p b 2 经验判断 a发生与否不影响b发生的概率b发生与否不影响a发生的概率 判断两个事件相互独立的方法 注意 1 互斥事件 两个事件不可能同时发生 2 相互独立事件 两个事件的发生彼此互不影响 想一想判断下列各对事件的关系 1 运动员甲射击一次 射中9环与射中8环 2 甲乙两运动员各射击一次 甲射中9环与乙射中8环 互斥 相互独立 相互独立 相互独立 4 在一次地理会考中 甲的成绩合格 与 乙的成绩优秀 从甲坛子里摸出1个球 得到黑球 从乙坛子里摸出1个球 得到黑球 相互独立 相互独立 相互独立 a与b是相互独立事件 即两个相互独立事件同时发生的概率 等于每个事件发生的概率的积 2 推广 如果事件a1 a2 an相互独立 那么这n个事件同时发生的概率 p a1 a2 an p a1 p a2 p an 1 若a b是相互独立事件 则有p a b p a p b 应用公式的前提 1 事件之间相互独立2 这些事件同时发生 相互独立事件同时发生的概率公式 等于每个事件发生的概率的积 即 例题举例 例1 某商场推出两次开奖活动 凡购买一定价值的商品可以获得一张奖券 奖券上有一个兑奖号码 可以分别参加两次抽奖方式相同的兑奖活动 如果两次兑奖活动的中奖概率都为0 05 求两次抽奖中以下事件的概率 1 都抽到中奖号码 2 恰有一次抽到中奖号码 3 至少有一次抽到中奖号码 解 记 第一次抽奖抽到中奖号码 为事件a 第二次抽奖抽到中奖号码 为事件b 变式 至多有一次抽到中奖号码 练一练 已知a b c相互独立 试用数学符号语言表示下列关系 a b c同时发生概率 a b c都不发生的概率 a b c中恰有一个发生的概率 a b c中恰有两个发生的概率 a b c中至少有一个发生的概率 1 a发生且b发生且c发生 2 a不发生且b不发生且c不发生 练一练 已知a b c相互独立 试用数学符号语言表示下列关系 a b c同时发生概率 a b c都不发生的概率 a b c中恰有一个发生的概率 a b c中恰有两个发生的概率 a b c中至少有一个发生的概率 明确问题 已知诸葛亮解出问题的概率为0 8 臭皮匠老大解出问题的概率为0 5 老二为0 45 老三为0 4 且每个人必须独立解题 问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较 谁大 解决问题 引例的解决 这种情况下至少有几个臭皮匠才能顶个诸葛亮呢 已知诸葛亮解出问题的概率为0 9 三个臭皮匠解出问题的概率都为0 1 且每个人必须独立解题 问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较 谁大 探究 歪歪 乖乖 此时合三个臭皮匠之力的把握不能大过诸葛亮 分析 不可能同时发生的两个事件叫做互斥事件 如果事件a 或b 是否发生对事件b 或a 发生的概率没有影响 这样的两个事件叫做相互独立事件 p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灵宝农村消防安全培训课件
- 2025-2030工业机器人应用领域市场现状与未来发展潜力分析研究报告
- 2025-2030工业机器人产业链价值分布与投资风险评估报告
- 2025-2030工业废水处理设备市场需求变化与竞争格局研究报告
- 2025-2030工业大数据分析平台行业解决方案与标杆案例研究报告
- 2020-2021年北京市延庆区高一地理下学期期中试卷及答案
- 党支部申请书
- 委托公证申请书
- 疫情复工生产申请书
- 2016改名字申请书
- 历年全国《宪法》知识竞赛试题库完整版及答案【历年真题】
- 设备维护服务方案(2篇)
- 基本乐理(师范教育专业)全套教学课件
- 医院检验科实验室生物安全程序文件SOP
- 手术前术前准备未执行的应急预案
- JJG 270-2008血压计和血压表
- 《解剖学基础》课件-上肢骨及其连接
- T-CARM 002-2023 康复医院建设标准
- 轻质燃料油安全技术说明书样本
- 毕业设计(论文)-水果自动分拣机设计
- 杏仁粉营养分析报告
评论
0/150
提交评论