




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的最大值与最小值 一 知识回顾 一般地 设函数y f x 在x x0及其附近有定义 如果f x0 的值比x0附近所有各点的函数值都大 我们就说f x0 是函数的一个极大值 记作y极大值 f x0 x0是极大值点 如果f x0 的值比x0附近所有各点的函数值都小 我们就说f x0 是函数的一个极小值 记作y极小值 f x0 x0是极小值点 极大值与极小值统称为极值 1 函数极值的定义 1 在定义中 取得极值的点称为极值点 极值点是自变量 x 的值 极值指的是函数值 y 注意 2 极值是一个局部概念 极值只是某个点的函数值与它附近点的函数值比较是最大或最小 并不意味着它在函数的整个的定义域内最大或最小 3 函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 4 极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值 如下图所示 是极大值点 是极小值点 而 3 用函数的导数为0的点 顺次将函数的定义区间分成若干小开区间 并列成表格 检查f x 在方程根左右的值的符号 求出极大值和极小值 2 求函数f x 的极值的步骤 1 求导数f x 2 求方程f x 0的根 x为极值点 注意 如果函数f x 在x0处取得极值 就意味着 二 新课讲授 1 最值的概念 最大值与最小值 如果在函数定义域i内存在x0 使得对任意的x i 总有f x f x0 则称f x0 为函数f x 在定义域上的最大值 最值是相对函数定义域整体而言的 如果在函数定义域i内存在x0 使得对任意的x i 总有f x f x0 则称f x0 为函数f x 在定义域上的最小值 1 在定义域内 最值唯一 极值不唯一 注意 2 最大值一定比最小值大 2 如何求函数的最值 1 利用函数的单调性 2 利用函数的图象 3 利用函数的导数 如 求y 2x 1在区间 1 3 上的最值 如 求y x 2 2 3在区间 1 3 上的最值 2 将y f x 的各极值与f a f b 比较 其中最大的一个为最大值 最小的一个为最小值 1 求f x 在区间 a b 内极值 极大值或极小值 3 利用导数求函数f x 在区间 a b 上最值的步骤 注意 若函数f x 在区间 a b 内只有一个极大值 或极小值 则该极大值 或极小值 即为函数f x 在区间 a b 内的最大值 或最小值 例1 求函数f x x2 4x 6在区间 1 5 内的最大值和最小值 解 f x 2x 4 令f x 0 即2x 4 0 得x 2 3 11 2 故函数f x 在区间 1 5 内的最大值为11 最小值为2 三 数学应用 函数 在 1 1 上的最小值为 a 0b 2c 1d 13 12 a 练习 例2 解 四 课堂练习 课本p33练习no 1 2 3 五 课堂小结 1 最值的概念 最大值与最小值 如果在函数定义域i内存在x0 使得对任意的x i 总有f x f x0 则称f x0 为函数f x 在定义域上的最大值 最值是相对函数定义域整体而言的 如果在函数定义域i内存在x0 使得对任意的x i 总有f x f x0 则称f x0 为函数f x 在定义域上的最小值 1 在定义域内 最值唯一 极值不唯一 注意 2 最大值一定比最小值大 2 求函数最值的常用方法 1 利用函数的单调性 2 利用函数的图象 3 利用函数的导数 如 求y 2x 1在区间 1 3 上的最值 如 求y x 2 2 3在区间 1 3 上的最值 3 用导数求函数f x 的最值的步骤 2 将y f x 的各极值与f a f b 比较 其中最大的一个为最大值 最小的一个为最小值 1 求f x 在区间 a b 内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省深圳南山区五校联考2026届数学八年级第一学期期末综合测试试题含解析
- 安徽省合肥市中学科大附中2026届数学九年级第一学期期末质量跟踪监视模拟试题含解析
- 新型储能技术压缩空气储能的研究与发展
- 2025股份转让合同范本
- 安徽省阜阳颍东区四校联考2026届数学八年级第一学期期末联考试题含解析
- 中国银行金华市东阳市2025秋招英文面试20问及高分答案
- 工商银行赤峰市红山区2025秋招笔试英语阅读理解题专练30题及答案
- 邮储银行绥化市海伦市2025秋招笔试金融学专练及答案
- 中国银行惠州市博罗县2025秋招半英文面试题库及高分答案
- 邮储银行崇左市江州区2025秋招笔试金融学专练及答案
- 工会经审业务网络知识竞赛题库
- 宁夏易制毒管理办法
- 学堂在线 新闻摄影 期末考试答案
- 脑瘫个案护理
- 2025年全国新高考英语II卷试题解析及复习备考策略(课件)
- 课本剧《霸王别姬》剧本【3篇】
- 2025至2030年中国乙肝疫苗行业市场发展模式及未来前景分析报告
- 作文写作(解析版)-2025年中考语文一模试题分类汇编(贵州专用)
- 人工智能技术研发股东出资合作框架协议
- 《资源环境信息技术》课件 - 探索数字化时代的环境保护与可持续资源管理
- 异麦芽糖酐铁注射液-药品临床应用解读
评论
0/150
提交评论