外文翻译-基于CAN总线在设计网络中使用远程IO模块_第1页
外文翻译-基于CAN总线在设计网络中使用远程IO模块_第2页
外文翻译-基于CAN总线在设计网络中使用远程IO模块_第3页
外文翻译-基于CAN总线在设计网络中使用远程IO模块_第4页
外文翻译-基于CAN总线在设计网络中使用远程IO模块_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

英文原文DESIGNOFPLCNETWORKSUSINGREMOTEI/OMODULEBASEDONCONTROLLERAREANETWORKP.Roengruen,T.Suesut,J!Tipsuwanporn,V.KongratanaandS.KulphanichFacultyofEngineering,KingMongkutsInstituteofTechnologyLadkrabang,BangkokThailandTel(662)-326-7346-7ext102E-mail:ktvittaykmitl.ac.thABSTRACTInthispaper,thedesignofthenetworkssystemthroughCANbusispresented.Todistributethecontrolpointswithalongdistanceanddifferentlocatedfortheapplicationtoon-offelectricalequipmentbytheremoteI/Omodule.ThecontrollingandcommunicationbetweenthePLCandtheremote110modulesareusedbytheCANbusserialcommunication.Inthispaper,theexperimenthasbeensetupthemaximumof32remoteI/Omodules.EachremoteI/OsarelinkedtohostPLCprogrammedforhandlingainterruptrequestfromanyremote110independently.Therefore,thescanningtimeofthecontrollernoteffects.Byusingthistechnique,thecontroller(PLC)canbeefficientlyappliedtotheseveralhundredmeters1.INTRODUCTIONAprogrammablelogiccontrolleriswidelyusedintheindustrialcontrolsystem.Thedevelopmentisproposedtoexpandthecontrolpoints,developtheinstructionsetforeasierprogrammingtomoreintelligence,theinterfacingwiththeothersystem,thecontrollingwithlongdistance.ControllerAreaNetwork(CAN)isawell-knownbustechnologyinindustrialcommunicationsystem.TwoversionsofCANdifferinginthesizeoftheidentifierexistthatconsistofCAN2.0Awithan11-bitidentifierandCAN2.0Bwitha29bitidentifier.ThispaperfocusesofCAN2.0AprovidingasufficientnumberofidentifiersfordesignPLCwithlowcostnetwork.ThecommunicationmediausedatwistedpairwiththeseveralhundredmetersforeachremoteI/Omodules.EachofremoteI/Omodulesconsistsof16-bitdigitalinputand16-bitdigitaloutput,andthemaximumof32remoteI/OmodulescanbelinkedtohostPLCmeanthatthemaximumcontrolpointsareof512points.Theautomaticcontrolsystemsinindustrieshavemanykindsoffielddevice(e.g.sensor,actuators),andmanykindsofprocesscontrol.Thefieldbusconceptneededtocombinethesignalsfrommanykindsoftheprocesscontrolequipmenttobethesamesignalbydigitalcommunication.Thetraditionalcommunicationstandardsknowas4-20mAdc(e.g.transmitter,I/Ptransmitter).Thisstandardprovidesforpoint-to-pointconnection,whichconsistsofallinformationexchangedbetweenfieldandcontroldevicesinbothdirections.Thegreatnumberoffielddevicesbeingusedrequiresalotofcables.Thisistheproblemininstallationandmaintenanceandthedocumentationworkaswell.Thefieldbusconceptisbasicallyadigitalcommunication,whichiscapableofinterconnectionfielddeviceswithcontrolsysteminanyprocesscontrolenvironment.Thefieldbuscommunicationarchitectureinthetermofnodewillbeusedtorefertoafielddevice.Thefieldbusdeviceshavewidevarietiesoffielddevices.Therearesimpledevicessuchasthelimitswitches,relays,single-contactdeviceanddumbactuators,smartsensor,thecomplexdevicessuchastheprogrammablecontrollers,PIDandloopcontrollers,etc.Thefieldbussupervisoristhecentralcontrollerthattakesthetotalresponsibilityforinitializingthebus,establishingwhatdevicesareattachedtoitandmonitoringitsactivities.Inthepast,incompatiblevendor-specificfieldbuswerefrequentlyused.Manyfieldbussystemstodayareopenstandardsystem.Theuserisnolongertiedtoindividualvendorsandisabletoselectthebestandmosteconomicalproductfromawidevarietyofproducts.Today,allleadingmanufacturersofautomationtechnologyofferfieldbusinterfacesfortheirdevices.Thatiswhythefieldbussystemspresentverydynamicallygrowingbranchofscienceanddevelopmentdirectlyappliedinindustry.Thesetechnologiesaredevelopedandadministratedbyuserorganizations(CANinAutomation,OpenDeviceNetVendorAssociation8,FieldbusFoundation1,3,ProfibusInternational2,5etc.).ThepopularityofCANisduetoitseaseofuse,toitsextremelyhighefficiencyandreliabilityandtothelowcostsofCANimplementations.Therefore,inthispaperfocusesontheControllerAreaNetworktodesignthePLCnetwork.2.CONTROLLERAREANETWORKElectronicunitsbegantoequipvehiclesinearly80s.Gradually,theyincreasedtheneedforreal-timecommunicationswithinavehicle.However,addingmorededicatedsignallinessoonbecameimpossiblebecauseofcost,reliabilityandrepairproblems.(Thetotallengthofcablesinsomehigh-endEuropeancarsreleasedinthelate80swasestimatedtobeover2km!)Tofulfillthissharpneedformultiplexedcommunication,the“RobertBoschGmbH”companydesignedtheCANnetwork.Althoughspecificallyconceivedfortheautomotiveindustry,itiswidelyusedinautomationmainlyduetothelowpriceofCANcommunicationsolutions.Fig.1FormatofaCANtelegramCANisabroadcastbus,withpriority-baseaccesstothemediumandnon-destructivecollisionresolution:whentwoormorenodestrysimultaneouslytotransmitamessage,thelowestpriorityframeslosethecontention.But,thehighestprioritymessagesuccessfullydestinationwithoutbeingdestroyedbythecollision.Nodesdonotpossessanaddress,andnoneofthemplayapreponderantroleintheprotocol.Amessagecontainsandidentifier,uniquetothewholesystem,thatservestwopurposes:assigningapriorityforthetransmission(thelowerthenumericalvalue,thegreaterthepriority)and2allowingmessagefilteringuponreception.Data,possiblysegmentedinseveralframes,maybetransmittedperiodically,sporadicallyoron-demand.Aminimal,CANcommunicationprofilehasathree-layeredarchitecture:aphysicallayer,aData-LinkLayer(DLL)andanapplicationlayer.TheDLLisimplantedinanelectroniccomponentcalledaCAN-Controller.TheIS0standards11519-2and11898ondefinethephysicallayerandtheDLL.However,standardproposalshavebeenmadefortheapplicationlayer(CANApplicationLayer,orCAL)orforcompleteprofilesbasedonthetwonormalizedlayers(SmartDistributedSystems,ofSDS,DeviceNet)Duetothemediumaccesstechnique(Priority-basedCarrierSenseMultipleAccess/CollisionDetection),themaximumdataratethatcanbeachievedessentiallydependsonthebuslength.Forexample,themaximumdataratefor30and500meterbusesarerespectively1Mbit/secand100kbit/sec6.TheCANmessageformatthatuses11-bitidentifiers(2.0Aformat);however,anextendedCANformat(2.0Bformat)alsoexitsthatuses29-bitidentifiersinstead.CANcontrollerssupportingtheextendedformatwillingeneralalsoworkwiththestandardformatcommunicationusing11-bitidentifiersalthoughthereverseisnotalwaystrue.SomedevicessupportingpurelythestandardformatwillbeabletotolerateotherdevicestransmittingCANframesusingtheextendedformat(2.0Bpassivedevices)andfunctioncorrectly.Amessageinthestandardformatbeginswiththestartbitorstartofframe(SOF).ThisisfollowedbythearbitrationfieldwhichcontainstheidentifieroftheCANtelegramandisusedtoarbitrateaccesstothebus.AlsopartofthearbitrationfieldistheRTRbit(remotetransmissionrequest)whichindicateswhethertheframeisarequestframe(withoutanydata,thistypeofmessageisusedtotriggeratransmissionbyanothernode)oradataframe.ThecontrolfieldcontainstheIDEbit(identifierextension),whichindicateswhethertheframeisastandardformatframeoranextendedone,ther0bitthatisreservedforfutureextensionsandfouradditionalbitscontainingthelengthofthedatafield(datalengthcode).NextcomesthedatafieldwhichcanbefromzerotoeightbytesinlengthandtheCRCfieldthatcontainsa15-bitcodethatisusedtocheckframeintegrity.Theacknowledge(ACK)fieldcomprisesanACKslotbitandanACKdelimiterbit.TheACKslotistransmittedasarecessivebit(abitwithavalueof1)andreceiversthatretrievethemessagecorrectly(regardlessofwhetherthemessageismeantforthecontrollerornot)overwritethisfieldwithadominantbit(abitwithavalueof0).Thedetectionofthisdominantbitbythetransmittermeansthatthemessagewasacceptedbyatleastonenodeandwasthereforeerror-free.Theendofframefield(EOF)denotesthattheframeterminated.Finally,theintermission(Int)spacerepresentstheminimumnumberofbitperiodsthatneedtoelapsefollowingtheframebeforeanotherstationisallowedtotransmitamessage.Ifnoothertransmissionsfollowtheframethebusremainsinitsbusidlestate.3.NETWORKSYSTEMCONFIGURATIONSThesystemconsistsofthePLCtobeusedasthefieldbussupervisorandtheremoteI/Omoduleasthefieldbusdevice.ThefieldbusdeviceandfieldbussupervisorareconnectedthroughthetwistedpairinformofbustopologybyCANbus.EachremoteI/OmodulehastheunitnumberinordertosettheidentifieronCANprotocol.Theunitnumbercanbesetfromthedipswitches,whichrunfromunit00tounit31thelowestvalueofunitnumberisthehighestprioritysothatusercanselectthepriorityofanydevice.Fig,3showstheconnectingbetweenthePLCandtheremoteI/Omodule.Fig.3.TheconnectingbetweenthePLCandtheremoteI/Omodules4.HARDWAREDESIGNInFig4,showsthePLCthatusedmicroprocessorpartNo.84C117asthecentralProcessingUnit(HostCPU).ThePLCconsistsofopto-isolated24inputsand12output,thesequentialoperationcontrolprogramandthespecialfunction,suchasshiftregister,canbewrittendowntoPLCthroughbuildinkeyboard.ThePLChastheCANcontrollerpartNo.DS80C390(DALLASsemiconductor)9andCANtransceiverchipspartNo.82C251(Philipssemiconductor)inordertocommunicatewiththeremoteI/Omodules.TheprogramminglanguagebeingusedistheLadderDiagraminstruction.Themonitoringfunction,whichusedtoobservethestatusofthePLCoperation,isalsoincluded.TheremoteI/OmoduleusedthesimilarCANcontrollerandCANtransceiver.Theinputoutputportisprotectedfromtheoutsideelectricalsignalbytheopto-isolatorFig.4.Theprogrammablelogiccontroller(PLC).Fig.4Theprogrammablelogiccontroller(PLC)Fig.5ThestructureofPLCandremoteI/Omodules5.OPERATIONOFTHEINSTRUCTIONSTheinstructionusedtheladderdiagramprogramminginordertosendorreceivetheinformationwiththeremoteI/Omodule.TheladderdiagramprogrammingisnamedasRDIistheinstructiontoreaddatafromremoteI/OandWROistheinstructiontowritedatatoremoteI/O.Thisladderinstructioniscontrolledbytheinterruptrequestcontrolrelay.Iftheconditionoftheinterruptrequestcontrolrelayislogical1thenthecontrollerwillcreateandsendblockcommandtoreadorwritedatadependontheprogramrequested.ThereforethecontrollernotnecessarytocommunicatewiththeunconcernedremoteI/Omodule.Inthiscase,thescantimeofthecontrollerisnoteffected.Moreover,addingorremovingoftheremoteI/Omodulecanbedoneindependently.RDIinstruction(FUN70)Fig.6.TheRDIladderinstructionInFig.6,theRDIinstructionisthefunctionnumber70intheladderinstructionofthisPLC.WROinstruction(FUN71)Fig.7.TheWROladderinstructionInFig.7,theWROinstructionisthefunctionnumber71intheladderinstructionofthisPLC.BothinstructionshavetodeterminetheunitnumberoftheremoteI/Omodule,whichrequestedinformation.TheWDisthewordmemoryinthecontrollerashexadecimalcodefor16-bitbinarysystem.ThedatafromtheremoteI/Oshouldhavetemporarystorageareainthewordmemory,whichisdetermined.Therefore,theremoteI/OmemoryisconsideredasthePLCmemory.TherearemanykindsofwordmemoriesinthePLCsuchasInternalRelay(IR),HoldingRelay(HR),andDataMemory(DM),respectively.Fig.8.TheapplicationexampleFig.9.Theladderprogram6.IMPLEMENTATIONInFig.8,ThesystemcanbeappliedtothemultigroupsON-OFFcontrolwithlongdistance(maximumdistance48metersat1Mbpsdatatransmissionrate).Inthisexperimentthe100kbpsdatatransmissionratewith200metersdistanceisused.ThecasestudymodelconsistsofthemainconveyerandsubsconveyerA,B,C,respectively.Theproductsaremovedbythemainconveyerandaredetectedbysensor1,sensor2andsensor3.Iftheproductisidentifiedforarrangingtosub-conveyerA,thecylinder1willmoveouttoturntheproducttothesub-conveyerA.Sotheinterruptcontrolrelaywhichcontroltheoperationofremoteinputnumber00andremoteoutputnumber01willoperatebytheconditionoftimerfor20seconds.Therefore,thecontrollerdosenotnecessarytoupdatedataoftheotherremoteinput/outputmoduleeveryscan-time.TheladderprogrammingthatshowinFig.9.7.CONCLUSIONSThepapershowsthetechniquetodesignthePLCsysteminordertoexpandtheinputandoutputwiththeremoteI/OmodulebasedonCANbus.ThisPLCsystemcanbeusedtocontrolmanydeviceswithlongdistanceassameasthefieldbustechnique.TheinstructionbeingdesignedinthisPLCisveryelasticsandsuitablefortheladderdiagramprogramming.ThePLCcanbeefficientlyappliedtotheON-OFFcontrol.中文翻译基于CAN总线在设计网络中使用远程IO模块摘要在本文中,通过总线介绍了网络系统设计。分布控制点与长距离和不同的应用程序位于电气设备的远程IO模块上下。110个远程IO模块和控制之间的沟通是使用的总线串行通信。在本文的实验中,建立32个最高的远程IO模块,每个远程操作系统与主机编程处理请求都是从110个远程IO模块中独立发出的。因此,扫描时间控制器不影响。通过使用这种技术,该控制器(LC)可以有效地应用到几百米。1.简介可编程控制器已广泛应用于工业控制系统,受关注的发展方面有:扩展控制点数,指令系统能较容易设计更智能的程序,通过其接口可以连接其他系统以实现远距离控制。CAN总线是一种在工业通信中广泛应用的总线技术。依据标识符的大小,CAN总线可分为两种版本,即11位标识符的CAN2.0A和29位标识符的CAN2.0B。本文采用的CAN2.0A对于设计低成本的PLC网络是完全符合标识符要求的。各远程I/O模块之间的传输介质采用几百米长的双绞线,每个远程I/O模块由16位数字输入和16位数字输出组成,主PLC最多有512个控制点,可以有32个远程I/O模块连接到主PLC上。工业中的自动控制系统有许多种类的设备(比如传感器)和过程控制,其间总线传输采用数字通信将各种过程控制设备联系起来。传统的通讯标准以4-20mAdc(例如发射机,I/P发射机)著称。此标准规定以点对点通信,由各区域和控制设备之间相互转换的所有信息组成。大量的现场设备需要很多电缆,在安装和维护的过程中这是个问题,文档处理也很麻烦。现场总线主要是一个数字通信系统,此系统能够在任何控制环境中互联各个现场设备。现场总线通信体系结构常以节点表示现场设备,现场设备种类广泛,较简单的设备有限位开关、继电器、一次接触器、灵敏传感器等,复杂的设备有可编程控制器、PID和循环控制器等。现场总线由中央控制器来控制并负责初始化,以及建立总线下的现场设备并监视它的动态。过去,现场总线的厂商之间存在很多矛盾。如今现场总线系统都是标准开放系统,用户不再依赖某一特定厂商,而是能够从种类繁多的产品当中选择最佳最经济的产品。今天,.所有的自动控制技术厂商都为其设备生产现场总线接口。现场总线系统是科技领域中一个直接在工业中应用的强劲的分支。这些技术依靠用户来发展和支配。(自动控制CAN,开放式设备网络厂商联合会8,现场总线基础1,3等)CAN总线得以普及,是因为它简单易用,有非常高的效率和可靠性且执行成本低。因此,本论文的重点是利用CAN总线来设计PLC网络。2.控制器区域网络早在八十年代初期的时候,电子就开始利用媒介传输。以后,他们就更加需要以媒介来建立实时通信。但因为成本,可靠性和维修问题,不可能增加太多的传输信号线。(到八十年代末期,在一些高端技术的欧洲车上,估计传输电缆的总长将超过2公里!)为了满足多路通讯的强烈需求,“罗伯特博世”股份有限公司设计了CAN网络。虽然最初的的构想为汽车行业服务,但由于CAN通信解决方案价格的低廉性,如今已被广泛的用于自动控制中。图1CAN总线报文的格式CAN总线是一个广播总线,是具有优先权的优先使用的媒介。非破坏性碰撞协议为:当两个或两个以上的节点同时传送一个讯息,具有低优先级的信息失去了争夺。但具有最高优先级的信息能够成功的传输而不被碰撞所破坏。节点不能占有一个地址,它们在协议中不具有优先权。在整个系统中,一个信息包含唯一的一个标识符,即有两个目的:为传输指定一个优先级(数值越低,优先级越高)和接收信息经过2个允许讯息筛选后,可能分割为若干个框架,也可能被定时性的传输,或者被要求进行断断续续的传输。对一个最低限度的CAN来说具有三层体系结构:物理层,数据链路层(DLL)和应用层。数据链路层被植入在一个电子器件中,称为CAN控制器。ISO标准的11519-2和11898定义了物理层和数据链路层。然而,对于应用层来说,最适宜的标准提议或是完整结构是基于这两个层次的规格化(即智能分布式系统)由于媒体传输技术(具有优先级的多路复用/碰撞检测)从本质上依靠数据总线的长度,数据速率可以达到最大值。举例来说,对于30米和500米的总线,数据速率最高可分别为1Mbit/s和100Kbit/s6。CAN的信息格式使用11位标识符(2.0格式);不过,也可以延长1个格式(2.0B格式),用29位标识符替代。CAN的控制器支持扩展格式,在通常情况下,传输信息用11位标识符的标准格式,但也并非总是如此。对于完全支持标准格式的设备来说,也可能容忍其他装置用扩展格式(2.0b无源器件)传输CAN的帧。在标准格式里,一个信息以起始位或启动帧开始的。紧跟着是中断字段,它包含了CAN电报的标识符,并对是否有权使用总线做出公断。同时RTR位(远程传输的请求)被中断字段所占有,用来表示帧是否帧是一个请求帧(无任何数据,这种类型的信息是由另一个节点触发传输)或一个数据帧。控制字段包含IDE位(标识符扩展部分),用来表明帧是否是一个标准格式的帧或扩展的帧,r0位留做作为将来扩展之用,并增设四位作为数据字段的长度(数据长度代码)。接下来的0到8个字节的数据字段由CRC帧所占有,它包含了一个15位的原代码,用来检查帧的完整性。接受帧(ACK数据)包括一个ACK插槽位和一个ACK定界符位。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论