




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(文科数学)答案一、选择题(本大题共10小题,每小题5分,共50分,请将答案填涂在答题卡上)12345678910BBCCADADCB二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卷相应位置)11. 12. 13. 14. 15. 三、解答题:本大题共6小题,共75分16.(本题12分)解:()所以的最小正周期,最小值为()因为,所以又,所以,得:因为,由正弦定理得:由余弦定理得:又,所以17. (本题12分)解:()设等差数列的公差为,因为,所以有,解得,所以;()由()可知,所以,所以 18. (本题12分)解:()恒成立,故在递减令;令所以最大值为,最小值为() ,令,当时,所以没有极值点;当时,减区间:,增区间:,有极小值点,极大值点19. (本题12分)BADCFE ()证明:平面,平面,则 又平面,则平面 ()由题意可得是的中点,连接平面,则,而,是中点,在中,平面() 平面,而平面,平面是中点,是中点,且, 平面,中, 20.(本题13分) 解: () 当时,恒有,则在上是增函数; 当时,当时,则在上是增函数; 当时,则在上是减函数 综上,当时,在上是增函数;当时,在上是增函数,在上是减函数 ()由题意知对任意及时, 恒有成立,等价于 因为,所以 由()知:当时,在上是减函数 所以 所以,即 因为,所以 所以实数的取值范围为 21.(本题14分)解:()由题可得,所以在曲线上点处的切线方程为,即 令,得,即由题意得,所以()因为,所以即,所以数列为等比数列故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年废弃矿井资源再利用技术市场推广与产业应用研究报告
- 医院生产安全培训考试题及答案解析
- 2025年安徽安科生物工程(集团)股份有限公司招聘考前自测高频考点模拟试题及答案详解1套
- 2025年新能源行业绿色制造技术与创新应用研究报告
- 2025-2030工业软件行业市场供需格局分析及未来发展趋势预测报告
- 2025-2030工业软件市场供需格局与投资机会分析报告
- 2025年智能家居系统互联互通标准深度解析与产业趋势报告
- 2025-2030工业视觉检测系统在精密制造中的精度验证报告
- 2025黑龙江黑河市爱辉区招聘公益性岗位就业人员32人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025-2030工业节水技术应用前景及市场推广策略报告
- 企业防台风安全培训课件
- 2025年全国消防设施操作员中级理论考试(单选上)
- 产品设计调研课件
- 2024年黑龙江省《辅警招聘考试必刷500题》考试题库附完整答案
- 静脉输液团标课件
- 2025年编外人员考试题库答案
- 江苏省城镇供水管道清洗工程估价表及工程量计算标准 2025
- 2025年秋人教版二年级上册数学教学计划含教学进度表
- 激光焊接技术在钛合金材料加工中的前沿应用
- 四年级学生健康体质监测方案
- 福建冠豸山简介
评论
0/150
提交评论