




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 导数应用1利用导数研究函数单调性常见题型1运用导数求函数的单调区间利用导数研究函数单调性的一般步骤:(1)确定函数的定义域;(2)求导数f(x);(3)在定义域内解不等式f(x)0或f(x)0,得单调区间例1求函数f(x)x(ex1)x2的单调区间解由已知,得当f(x)(ex1)(x1)0时,有x0或x1.当x0;当1x0时,f(x)0时,f(x)0.故f(x)的递增区间是(,1),(0,),递减区间是(1,0)点评单调区间开闭不扣分,但定义域不取的数一定不能取;断开的单调区间一般不合写,也不用“”连接,中间用“,”或“和”连接例2已知函数f(x)x23x2ln x,则函数f(x)的单调递减区间为_分析先求函数f(x)的定义域和导数,再结合定义域解f(x)0即可解析函数f(x)的定义域为(0,),f(x)2x3.令f(x)0,即2x30,且2x23x20,解得0x1时,ln x.分析可构造函数f(x)ln x(),由于f(1)0,故若能证明f(x)为(1,)上的增函数,即证明在(1,)上,导函数f(x)0恒成立即可证明令f(x)ln x(),则有f(1)0.因为f(x)x0,x(1,),所以函数f(x)为(1,)上的增函数,又f(1)0,所以当x(1,)时,f(x)0恒成立,即ln x.点评证明不等式f(x)g(x),x(a,b)的一般方法:构造函数F(x)f(x)g(x),x(a,b),分析F(x)在区间(a,b)上的单调性及最小值与0的大小,进而说明F(x)0在(a,b)内恒成立即可3求参数的取值范围例4已知函数f(x)x3ax21.(1)若函数f(x)的单调递减区间是(0,2),求实数a的值;(2)若函数f(x)在区间(0,2)上是减少的,求实数a的取值范围分析注意正确区分“在某区间单调”和“单调区间”的概念,避免混淆解(1)由f(x)的单调递减区间为(0,2)可知0与2是方程f(x)3x22ax0的两根,故有3222a20,解得a3.(2)因为函数f(x)在区间(0,2)上是减少的,所以f(x)3x22ax0在(0,2)上恒成立,即2a3x在区间(0,2)上恒成立因为x(0,2),所以3x(0,6),故2a6,即a3.经验证a3时满足题意,故a的取值范围为3,)点评若函数f(x)在区间D上是增(减)函数,则有f(x)0(f(x)0)对xD恒成立,这类问题,通常利用导数转化为不等式在某区间上的恒成立问题,进而把恒成立问题转化为求一个函数在某区间上的最大(小)值问题求解也可根据所给区间是单调递增(减)区间的子区间求解.2巧用导数求极值1函数的极值点的判定方法设函数f(x)在x0处连续,判定f(x0)是极大(小)值点的方法是:(1)如果在x0两侧f(x)符号相同,则x0不是函数f(x)的极值点;(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;(3)如果在x0附近的左侧f(x)0,那么f(x0)是极小值也就是说,极大值点可以看成是函数递增区间与递减区间的分界点,极大值是极大值点附近曲线由上升到下降的过渡点的函数值极小值则是极小值点附近曲线由下降到上升的过渡点的函数值2极值常见题型详解(1)利用导数求函数的极值例1求函数f(x)xln x的极值点解f(x)ln x1,x0.而f(x)0ln x10x,f(x)0ln x100x0,f(x)在(0,)上是增加的,无极值;若a0,令f(x)0,得x.当x(0,)时,f(x)0,f(x)是增加的;当x(,)时,f(x)0时,f(x)的递增区间为(0,),递减区间为(,),极大值为ln a1,无极小值点评本题通过求导,把问题转化为含参数的不等式问题,需要对问题进行讨论,讨论时需要全面,避免遗漏(3)极值问题的逆向考查例3已知函数f(x)x3ax2bxa27a在x1处取得极大值10,则的值为()A B2C2或 D不存在解析由题意知f(x)3x22axb.所以解得或经检验满足题意,所以.故选A.答案A点评本题是已知极值求参数,逆向考查了极值的含义,解题关键是需要对所求参数进行讨论,是否满足极值的条件如果不满足,需要舍去3分类讨论思想在导数中的应用分类讨论思想在导数中的应用非常广泛,尤其是在求含参数的函数的单调区间、极值或最值的问题中,那么如何确定分类讨论的标准呢?1按导数为零的根的大小来分类例1设函数f(x)x(xa)2(xR),其中aR且a0,求函数f(x)的极大值和极小值解f(x)(3xa)(xa),令f(x)0,解得xa或x.当a,即a0,x(,)时,f(x)0,x(a,)时,f(x)0,因此,函数f(x)在x处取得极小值a3,在xa处取得极大值0.当a,即a0,x(,a)时,f(x)0,x(,)时,f(x)0,此时f(x)0,函数f(x)是减少的;当x(1,)时,h(x)0,函数f(x)是增加的(2)当a0时,由f(x)0,解得x11,x21,当a,即x1x2时,h(x)0恒成立,此时f(x)0,f(x)在(0,)上是减少的;当0a10,x(0,1)时,h(x)0,f(x)0,f(x)是减少的,x(1,1)时,h(x)0,f(x)是增加的,x(1,)时,h(x)0,f(x)0,f(x)是减少的;当a0时,100,f(x)0,f(x)是减少的,x(1,)时,h(x)0,f(x)是增加的综上所述:当a0时,函数f(x)在(0,1)上是减少的,在(1,)上是增加的;当a时,函数f(x)在(0,)上是减少的;当0a2时,方程g(x)0的根为x1ln 0,此时,若x(0,x2),则g(x)0,故g(x)在区间(0,x2)内为减函数所以x(0,x2)时,g(x)g(0)0,即f(x)ax,与题设f(x)ax相矛盾综上所述,满足条件的实数a的取值范围为(,2点评本题对函数求导后应根据导数中含自变量部分的最值对a进行分类讨论小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 封顶仪式布置工程方案(3篇)
- 电气工拆除工程方案(3篇)
- 球儿真好玩课件
- 安全教育预期培训收益课件
- 猫狗咬伤护理课件
- 猫咪课件课程总结
- 文化自信在中职语文教学中的表征与落实途径初探
- 农业无人机租赁市场2025年技术创新与产业升级趋势分析
- 工程安全防台方案(3篇)
- 电梯工程分包方案范本(3篇)
- 河北省邯郸市2025届高三年级第一次调研监测 英语
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
- 四川省成都市2025届高中毕业班摸底测试英语试题(含答案)
- 简易呼吸器使用的评分标准
- 电脑耗材实施方案、供货方案、售后服务方案
- 水利工程专家协议书
- 肝硬化伴胃底静脉曲张的护理查房
- 2024年低压电工考试题库低压电工证考试内容
- 5 国行公祭为佑世界和平
- 食堂员工防鼠知识培训
- 工程伦理 课件全套 李正风 第1-9章 工程与伦理、如何理解伦理- 全球化视野下的工程伦理
评论
0/150
提交评论