已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学上册一元二次方程知识点总结人教版知识点一 一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 注意一下几点: 只含有一个未知数;未知数的最高次数是2;是整式方程。 知识点二 一元二次方程的一般形式一般形式:ax2 + bx + c = 0(a 0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。 知识点三 一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。 21.2 降次解一元二次方程 21.2.1 配方法知识点一 直接开平方法解一元二次方程(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。一般地,对于形如x2=a(a0)的方程,根据平方根的定义可解得x1=a,x2=?a.(2) 直接开平方法适用于解形如x2=p或(mx+a)2=p(m0)形式的方程,如果p0,就可以利用直接开平方法。(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。(4) 直接开平方法解一元二次方程的步骤是:移项;使二次项系数或含有未知数的式子的平方项的系数为1;两边直接开平方,使原方程变为两个一元二次方程;解一元一次方程,求出原方程的根。 知识点二 配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。 配方法的一般步骤可以总结为:一移、二除、三配、四开。(1) 把常数项移到等号的右边; 方程两边都除以二次项系数; 方程两边都加上一次项系数一半的平方,把左边配成完全平方式; 若等号右边为非负数,直接开平方求出方程的解。 21.2.2 公式法知识点一 公式法解一元二次方程(1) 一般地,对于一元二次方程ax2+bx+c=0(a0),如果b2-4ac0,那么方程的两个根为x=?b?b2a2?4ac,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。(2) 一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a0)的过程。(3) 公式法解一元二次方程的具体步骤: 方程化为一般形式:ax2+bx+c=0(a0),一般a化为正值 确定公式中a,b,c的值,注意符号;求出b2-4ac的值; 若b2-4ac0,则把a,b,c和b-4ac的值代入公式即可求解,若b2-4ac0,则方程无实数根。 知识点二 一元二次方程根的判别式式子b2-4ac叫做方程ax2+bx+c=0(a0)根的判别式,通常用希腊字母表示它,即=b2-4ac.0,方程ax2+bx+c=0(a0)有两个不相等的实数根=0,方程ax2+bx+c=0(a0)有两个相等的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区建设交互协议书
- 2024年12月大学英语六级考试真题第2套(含答案)
- 2026年高端鲜花定制公司费用报销管理制度
- 装修公司设计师工作规范
- 器械训练教学讲解
- 环境描写片断训练
- 2025-2026学年安徽省百师联盟高三上学期9月调研考试历史试题
- 2024-2025学年天津市津南区部分学校高一上学期11月期中联考地理试题(解析版)
- 2024-2025学年江苏省南京市高一上学期期末考试历史试题(解析版)
- 作业设计汇报展示
- 装修公司施工制度总则参考
- 初中英语比较级和最高级专项练习题含答案
- 水文比拟法估算年径流量举例 (1)讲解
- 商务宴请的点菜技巧课件
- 软件开发chapter3(软件分析与设计CASE工具)
- 低压柜试验报告
- 单招协议培训
- 扑克牌搭高塔 课件(16张PPT) 小学班会活动
- 2023学年完整公开课版插座安装
- 医疗机构麻醉药品和精神药品的使用管理
- GB/T 3672.1-2002橡胶制品的公差第1部分:尺寸公差
评论
0/150
提交评论