




已阅读5页,还剩65页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2008年湖北黄冈中学 第一课时 基本问题 第一课时 基本问题 课前导引 第一课时 基本问题 课前导引 1 用一个平面去截一个正方形得到的多边形 可以是 将可能的序号都填上 其中 三角形 四边形 五边形 六边形 七边形 简评 本问题涉及到直线与平面位置关系的判定与性质 学生应能根据所学立体几何知识熟练画出正方体的各种截面 并能说清楚截面与正方体各表面的交线是如何画出的 简评 本问题涉及到直线与平面位置关系的判定与性质 学生应能根据所学立体几何知识熟练画出正方体的各种截面 并能说清楚截面与正方体各表面的交线是如何画出的 答案 2 一个二面角的两个面与另一个二面角的两个面分别垂直 则这两个二面角 a 相等b 互补c 相等或互补d 大小关系不能确定 2 一个二面角的两个面与另一个二面角的两个面分别垂直 则这两个二面角 a 相等b 互补c 相等或互补d 大小关系不能确定 简评 要多从运动的角度来研究直线与直线 直线与平面 平面与平面的各种位置关系的空间形象 2 一个二面角的两个面与另一个二面角的两个面分别垂直 则这两个二面角 a 相等b 互补c 相等或互补d 大小关系不能确定 简评 要多从运动的角度来研究直线与直线 直线与平面 平面与平面的各种位置关系的空间形象 d 考点搜索 考点搜索 1 画图是一个基本功 要能熟练画出水平放置的平面图形的直观图 画出空间两条直线 直线和平面的各种位置关系的图形 能够根据图形想像它们的位置关系 2 熟练掌握线线 线面 面面平行与垂直的各种判定方法以及性质 3 会用反证法证明简单的问题 4 能够有选择地使用向量方法和非向量方法解决空间直线与平面位置关系的问题 链接高考 链接高考 例1 链接高考 例1 c 例2 法一 法一 法二 方法论坛 方法论坛 1 如何证两条异面直线相互垂直 1 证明两条异面直线所成角为90 2 证明两条异面直线的方向向量相互垂直 2 如何证直线和平面相互平行 1 证明直线和这个平面内的一条直线相互平行 2 证明这条直线的方向向量和这个平面内的一个向量相互平行 或者这条直线的方向向量可以用这个平面内的两个向量的线性组合来表示 3 证明这条直线的方向向量和这个平面的法向量相互垂直 3 如何证直线和平面垂直 1 证明直线和平面内两条相交直线都垂直 2 证明直线的方向量与这个平面内不共线的两个向量都垂直 3 证明直线的方向量与这个平面的法向量相互平行 4 如何证平面和平面相互垂直 1 证明这两个平面所成二面角的平面角为90 2 证明一个平面内的一条直线垂直于另外一个平面 3 证明两个平面的法向量相互垂直 5 如何证平面和平面互相平行 1 证明一个平面内两相交直线都与另一个平面平行 2 证明两个平面的法向量互相平行 6 如何做关于空间线面位置关系的选择题 工具演示 空间想象 逻辑推理相结合 长郡演练 长郡演练 1 下列命题正确的是 a 过平面外一点作此平面的垂面是唯一的b 过直线外一点作此直线的平行平面是唯一的c 过直线外一点作此直线的垂线是唯一的d 过平面的一条斜线作此平面垂面是唯一的 长郡演练 1 下列命题正确的是 a 过平面外一点作此平面的垂面是唯一的b 过直线外一点作此直线的平行平面是唯一的c 过直线外一点作此直线的垂线是唯一的d 过平面的一条斜线作此平面垂面是唯一的 d 2 a b异面 则过a与b垂直的平面 a 有且只有一个b 可能存在可能不存在c 有无数个d 一定不存在 2 a b异面 则过a与b垂直的平面 a 有且只有一个b 可能存在可能不存在c 有无数个d 一定不存在 若存在 则必有a与b异面垂直 即若a与b不垂直则不存在过a与b垂直的平面 2 a b异面 则过a与b垂直的平面 a 有且只有一个b 可能存在可能不存在c 有无数个d 一定不存在 b 若存在 则必有a与b异面垂直 即若a与b不垂直则不存在过a与b垂直的平面 第二课时 综合问题 课前导引 第二课时 综合问题 课前导引 第二课时 综合问题 1 右图是正方体的平面展开图 在这个正方体中 bm与ed平行 cn与be是异面直线 cn与bm成60 角 dm与bn垂直以上四个命题中 正确命题的序号是 a b c d 课前导引 第二课时 综合问题 1 右图是正方体的平面展开图 在这个正方体中 bm与ed平行 cn与be是异面直线 cn与bm成60 角 dm与bn垂直以上四个命题中 正确命题的序号是 a b c d c 2 下列5个正方体图形中 l是正方体的一条对角线 点m n p分别为其所在棱的中点 能得出l 面mnp的图形的序号是 写出所有符合要求的图形序号 解析 这是2003年的一道高考题 我们可以先画出一个与l垂直的正六边形截面 然后检查过哪三点的截面就是这个截面 而对于其他情况 要么画出截面与正方体各表面的交线然后用三垂线定理判断 要么建立空间直角坐标系用向量法计算 解析 这是2003年的一道高考题 我们可以先画出一个与l垂直的正六边形截面 然后检查过哪三点的截面就是这个截面 而对于其他情况 要么画出截面与正方体各表面的交线然后用三垂线定理判断 要么建立空间直角坐标系用向量法计算 答案 考点搜索 考点搜索 1 探索性问题是近年来高考立体几何题的热点题 通常要求考生探索在某平面或某直线上是否存在一点满足一定的条件 2 折叠问题经常在高考卷中出现 3 要求能够证明三点共线和三线共点问题 链接高考 链接高考 例1 2006全国卷 正方体abcd a1b1c1d1中 p q r分别是ab ad b1c1的中点 那么正方体的过p q r的截面图形是 a 三角形 b 四边形 c 五边形 d 六边形 链接高考 例1 2005全国卷 正方体abcd a1b1c1d1中 p q r分别是ab ad b1c1的中点 那么正方体的过p q r的截面图形是 a 三角形 b 四边形 c 五边形 d 六边形 d 例2 2007年湖南卷 如图 在底面是菱形的四棱锥p abcd中 点e在pd上 且pe ed 2 1 i 证明pa 平面abcd ii 求以ac为棱 eac与dac为面的二面角 的大小 iii 在棱pc上是否存在一点f 使bf 平面aec 证明你的结论 法一 i 由pa ab及pa ad可得 ii 用三垂线法求得二面角 30 证法一 先猜想f为棱pc中点时 有bf 平面aec 然后证明 可取pe中点m 连fm 则fm ce 设ac交bd于o 易证bm oe 于是平面bfm 平面aec 则得bf 平面aec 法二 所以共面 则bf 平面aec 法三 以a为原点 直线ad ap分别为y轴 z轴 过a点且垂直于平面pad的直线为x轴建立空间直角坐标系 写出各相关点坐标 然后设 写出向量的坐标 例3 2006年全国高考题 如图 已知平行六面体abcd a1b1c1d1的底面abcd是菱形 且 c1cb c1cd bcd 1 证明 c1c bd 第一类证法 非向量方法 1 证明 连结a1c1 ac和bd交于o 连结c1o 四边形abcd是菱形 2 法二 第二类证法 向量法 本题的向量解法大体上有两类 法一 确定三个知其模及两夹角的向量为空间向量的一个基底 对于平行六面体来说 通常选择从同一顶点出发的三条棱表示的向量为基底 如设 法二 如图建立空间直角坐标系 并设底面菱形边长为a 侧棱长为b 在线探究 例1 在正方形sg1g2g3中 e f分别是g1g2及g2g3的中点 d是ef的中点 现在沿se sf及ef将这个正方形折成一个四面体 使g1 g2 g3三点重合 重合后的点记为g 则在四面体s efg中必有 a sg efg所在平面b sd efg所在平面c gf sef所在平面d gd sef所在平面 在线探究 例1 在正方形sg1g2g3中 e f分别是g1g2及g2g3的中点 d是ef的中点 现在沿se sf及ef将这个正方形折成一个四面体 使g1 g2 g3三点重合 重合后的点记为g 则在四面体s efg中必有 a sg efg所在平面b sd efg所在平面c gf sef所在平面d gd sef所在平面 a 在线探究 1 如何证三点共线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CCS 015-2023煤矿主煤流运输智能控制系统技术要求
- T/SNTA 003-2024汽车用铝合金板带材产品碳排放评价技术规范
- T/CIQA 74-2024人工智能(AI)鉴定通用规范
- T/CNPPA 3026-2024塑料药包材用可控添加剂及使用指南
- 人工挖孔桩劳务合同模板6篇
- 贫困生助学贷款协议书5篇
- 农大劳务合同3篇
- 导视系统设计市场调查
- 职业卫生工作总结展示
- 黄色欧式风格设计说明
- 万达入职人才测评题答案
- 认识职业:医生
- 国际音标卡片(打印版)
- 2023年四川省资阳中考英语真题(含答案)
- 石砌体结构房屋安全性鉴定课件
- 护理管理pdca的课件
- 客户服务与问题解决技巧培训
- 腾讯云安全运维
- (材料)综合物性测量系统
- 土壤农化分析实验智慧树知到课后章节答案2023年下甘肃农业大学
- 人教版八年级《竹竿舞》评课稿
评论
0/150
提交评论