已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用函数观点看方程组与不等式 习题课 回忆 一次函数与一元一次方程的关系 由于任何一元一次方程都可转化为kx b 0 k b是常数 k 0 的形式 所以解一元一次方程可以转化为 当一次函数值为0时 求相应的自变量的值 从图象上看 这相当已知直线y kx b确定它与x轴交点的横坐标 一次函数与一元一次不等式的关系 由于任何一元一次不等式都可以转化为ax b 0或ax b 0 a b为常数 a 0 的形式 所以解一元一次不等式可以看作 当一次函数值大于或小于0时 求自变量相应的取值范围 从图象上看 解一元一次不等式相当于把不等式转化为比较函数图象上点的位置高低 一次函数与二元一次方程 组 的关系 由于任何二元一次方程都可转化为y kx b k b是常数 k 0 的形式 所以解二元一次方程组可以转化为 当自变量为何值时 两个函数的函数值相等 以及这个函数值是何值 从图象上看 这相当确定两条直线的交点坐标 一次函数与一元一次方程的关系 求ax b 0 a b是常数 a 0 的解 x为何值y ax b的值为0 1 任何一元一次方程都可转化为ax b 0 a b是常数 a 0 的形式 所以 解一元一交方程可以转化为 当一次函数值为0时 求相应的自变量的值 1 解一元一次不等式ax b 0 或ax b 0a b为常数 a 0 可以看作是 法1 当一次函数y ax b的函数值大于 或小于 0时 求自变量相应的取值范围 法2 一次函数y ax b的图象在x轴的上方 看相应的自变量范围 一次函数与一元一次方程的关系 二元一次方程组与一次函数的关系 每个二元一次方程组 两个一次函数 两条直线 自变量 函数的值 交点坐标 巩固练习 1 一次函数y x 5与x轴的交点坐标为 与y轴的交点坐标为 2 一次函数y 2x 5 当x 时 y 0 当x 时 y 0 3 当x 时 y x 2的图象在x轴的上方 当x 时 y x 2的图象在x轴的下方 2 一次函数y 5 x与y 2x 1图象的交点坐标为 2 3 则方程组的解为 3 若方程组的解为 则一次函数y 2x 1与y 3x 1的图象交点坐标为 4 根据下列图象 你能写出哪些方程组的解 解是什么 动手做一做 方程组 解得 x 0 6 y 0 2 方程组 解得 x 1 y 2 5 作出函数y 2x 1的图象 观察图象回答下列问题 1 x取哪些值时 2x 1 0 2 x取哪些值时 2x 1 0 3 x取哪些值时 2x 1 3 6 如图 是一个一次函数 请根据图象回答下列问题 1 当x 0时 y 当y 0时 x 写出直线对应的一次函数表达式 一元一次方程和一次函数有什么联系 y x 0 已知一次函数图象过点 和点 求函数解析式且画出图象 根据图象回答 当x 1时 y的值 图象与x轴的交点 的坐标 与y轴的交点 的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TS 62586-3:2025 EN Power quality measurement in power supply systems - Part 3: Maintenance tests,calibration
- 炉渣综合利用项目环境影响报告表
- 2025年济南烟草招聘真题及答案
- 中国电力科学研究院:车网互动技术发展现状与展望
- 2025年物理中考压轴真题及答案
- 火星基地知识试题及答案
- 2025年河南幼师招教题库及答案
- 子痫前期应急预案演练(3篇)
- 2025年文秘技能大赛题库及答案
- 辑推理能力测试题及答案
- 水产养殖规划方案(3篇)
- 呼吸的生理与病理教案
- 英语学习大学英语六级词汇表下载
- 特殊口腔护理课件
- 当代中国经济教学大纲
- 《纺织行业基础知识》课件
- 自制胸针出售合同协议
- 体育设备采购项目方案投标文件(技术方案)
- 社区志愿者服务积分兑换体系的激励机制
- 部队防失泄密教育课件
- 信息通信行业试题
评论
0/150
提交评论