



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求解系统的Lyapunov指数谱程序Lyapunov 指数是描述时序数据所生成的相空间中两个极其相近的初值所产生的轨道,随时间推移按指数方式分散或收敛的平均变化率。任何一个系统,只要有一个Lyapunov 大于零,就认为该系统为混沌系统。李雅普诺夫指数是指在相空间中相互靠近的两条轨线随着时间的推移,按指数分离或聚合的平均变化速率。一 chen系统的Lyapunov指数谱function dX = Chen2(t,X)% Chen吸引子,用来计算Lyapunov指数% dx/dt=a*(y-x)% dy/dt=(c-a)*x+c*y-x*z% dz/dt=x*y-b*zglobal a; % 变量不放入参数表中global b;global c;x=X(1); y=X(2); z=X(3);% Y的三个列向量为相互正交的单位向量Y = X(4), X(7), X(10); X(5), X(8), X(11); X(6), X(9), X(12);% 输出向量的初始化dX = zeros(12,1);% Lorenz吸引子dX(1) = a*(y-x);dX(2) = (c-a)*x+c*y-x*z;dX(3) = x*y-b*z;% Lorenz吸引子的Jacobi矩阵Jaco = -a a 0; c-a-z c -x; y x -b; dX(4:12) = Jaco*Y;Z1=;Z2=;Z3=;global a;global b;global c;b=3;c=28;for a=linspace(32,40,100); y=1;1;1;1;0;0;0;1;0;0;0;1; lp=0; for k=1:200 T,Y = ode45(Chen2, 1, y); y = Y(size(Y,1),:); y0 = y(4) y(7) y(10); y(5) y(8) y(11); y(6) y(9) y(12); y0=GS(y0); mod(1)=norm(y0(:,1); mod(2)=norm(y0(:,2); mod(3)=norm(y0(:,3); lp = lp+log(abs(mod); y0(:,1)=y0(:,1)/mod(1); y0(:,2)=y0(:,2)/mod(2); y0(:,3)=y0(:,3)/mod(3); y(4:12) = y0; end lp=lp/200; Z1=Z1 lp(1); Z2=Z2 lp(2); Z3=Z3 lp(3); enda=linspace(32,40,100);plot(a,Z1,-,a,Z2,-,a,Z3,-);title(Lyapunov exponents of Chen)xlabel(b=3,c=28,parameter a),ylabel(lyapunov exponents)grid on以上是三个变量的Lyapunov指数谱,下面是最大的Lyapunov指数谱:Z=;d0=1e-8;for a=linspace(32,40,80)lsum=0;x=1;y=1;z=1;x1=1;y1=1;z1=1+d0;for i=1:100 T1,Y1=ode45(Chen,1,x;y;z;a;3;28); T2,Y2=ode45(Chen,1,x1;y1;z1;a;3;28); n1=length(Y1);n2=length(Y2); x=Y1(n1,1);y=Y1(n1,2);z=Y1(n1,3); x1=Y2(n2,1);y1=Y2(n2,2);z1=Y2(n2,3); d1=sqrt(x-x1)2+(y-y1)2+(z-z1)2); x1=x+(d0/d1)*(x1-x); y1=y+(d0/d1)*(y1-y); z1=z+(d0/d1)*(z1-z); if i50 lsum=lsum+log(d1/d0); endendZ=Z lsum/(i-50);enda=linspace(32,40,80);plot(a,Z,-);title(Chen 系统最大lyapunov指数)xlabel(parameter a),ylabel(lyapunov exponents)二 模拟 Lorenz 系统最大lyapunov指数谱 function ly=jose_ly(b,k)% the largest lyapunov exponent of josephson% k 迭代步数,b 参数% 方程如下:% +G*+sin=I+A*sin(t)+sin(t)% 变化:% dx=y% dy=-G*y-sin(x)+I+A*sin(w*t)+a*sin(b*w*t)% Example:% ly=jose_ly(0,800)% Author:LDYU% Authors email: %d0=1e-8;ly=0;lsum=0;x=0;2;b;x1=d0;2;b;for t=1:k T1,Y1=ode45(Josephon,t-1,t,x); T2,Y2=ode45(Joseph
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省满城县2025年上半年事业单位公开遴选试题含答案分析
- 需求响应机制设计-洞察及研究
- 2025年5G通信面试题及答案
- 2025年工业机器人选型面试题
- 灌装机知识培训教材课件
- 安全高效协同优化系统在采掘中的应用-洞察及研究
- 智慧交通GIS建模-洞察及研究
- 激光原理课件讲义
- 知识储备培训计划课件
- 知识付费培训项目课件
- 机械技术培训课件
- 新车销售培训课件
- 中学群团工作管理制度
- 2025年河北省中考物理试卷
- 碳化硅项目可行性分析报告
- 安装电杆施工协议书范本
- 老年共病管理中国专家共识(2023)课件
- 我国汽车产业在全球价值链中的地位剖析与影响因素探究
- 衢州龙游县龙新高速公路投资有限公司招聘笔试题库2025
- 【素养目标】1.2.2 棱柱、圆柱、圆锥的展开与折叠 教案(表格式) 2024-2025学年北师大数学上册
- 池塘安全合同协议书
评论
0/150
提交评论