




已阅读5页,还剩166页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字信号处理课程知识点概要 1 第1章数字信号处理概念知识点 1 掌握连续信号 模拟信号 离散时间信号 数字信号的特点及相互关系 时间和幅度的连续性考量 2 数字信号的产生 3 典型数字信号处理系统的主要构成 量化 编码 采样 模拟信号 离散时间信号 数字信号 2 数字信号处理系统 3 1 周期序列的判断与周期T的求取 基本概念题 填空 判断 选择 本章典型题型与习题讲解 2 判断系统是否是线性非时变系统 Linearsystem 齐次性与叠加性即y1 n T x1 n y2 n T x2 n y n T ax1 n bx2 n ay1 n by2 n 加权信号和的响应 响应的加权和 Time invariant 时不变特性即y n n0 T x n n0 4 习题1 判断下面的序列是否是周期的 若是周期的 确定其周期 1 3 解 1 2 这是无理数 因此是非周期序列 A是常数 这是有理数 因此是周期序列 周期是T 14 5 4 线性卷积的计算 5 模拟信号数字处理的方法与过程 采样 恢复的概念 采样定理及采样后产生的影响 预滤波 平滑滤波的作用 6 7 8 9 第二部分离散时间系统1 线性时不变系统的判定2 线性卷积3 系统稳定性与因果性的判定4 线性时不变离散时间系统的表示方法5 系统分类及两种分类之间的关系 10 1 线性系统 对于任何线性组合信号的响应等于系统对各个分量的响应的线性组合 线性系统判别准则 若 则 2 时不变系统 系统的参数不随时间而变化 不管输入信号作用时间的先后 输出信号的响应的形状均相同 仅是出现时间的不同 若 则 时不变系统判别准则 11 3 线性卷积 y n 的长度 Lx Lh 1两个序列中只要有一个是无限长序列 则卷积之后是无限长序列卷积是线性运算 长序列可以分成短序列再进行卷积 但必须看清起点在哪里 12 4 系统的稳定性与因果性 13 5 差分方程 描述系统输入输出之间的运算关系N阶线性常系数差分方程的一般形式 其中ai bi都是常数 离散系统差分方程表示法有两个主要用途 求解系统的瞬态响应 由差分方程得到系统结构 14 6 线性时不变离散时间系统的表示方法线性常系数差分方程单位脉冲响应h n 系统函数H z 频率响应H ejw 零极点图 几何方法 7 系统的分类IIR和FIR递归和非递归 15 例1 判断下列系统是否为线性系统 解 a 故为线性系统 16 b 故为线性系统 17 故不是线性系统 c 可见 18 d 故不是线性系统 可见 19 例2 判断系统是否是移不变系统 其中a和b均为常数 解 故为移不变系统 20 例3 判断系统是否是移不变系统 解 故不是移不变系统 又 显然 21 解 故不是移不变系统 又 显然 a 22 故是移不变系统 又 显然 b 23 一个常系数线性差分方程是否表征一个线性移不变系统 这完全由边界条件决定 例如 差分方程 c 边界条件时 既不是线性的也不是移不变的 a 边界条件时 是线性的但不是移不变的 b 边界条件时 是线性移不变的 24 令 所以 25 所以 可见是移一位的关系 亦是移一位的关系 因此是移不变系统 26 代入差分方程 得 27 所以 因此为线性系统 28 3 判断系统是否是因果稳定系统 CausalandNoncausalSystem 因果系统 causalsystem 1 响应不出现于激励之前 2 h n 0 n 0 线性 时不变系统 StableSystem 稳定系统 1 有界输入导致有界输出 2 线性 时不变系统 3 H z 的极点均位于Z平面单位圆内 因果系统 实际系统一般是因果系统 y n x n 是非因果系统 因n0时的输入 29 b 由于领先于 故为非因果系统 例5 判断下列系统是否为因果系统 a 为因果系统 由定义可知 解 30 由于由目前和过去的输入所决定 故为因果系统 由于n 1时 有y 1 x 1 也就是领先于 故为非因果系统 31 第2章回顾 要点与难点 1 Z变换Z变换的定义 零极点 收敛域逆Z变换 部分分式法 Z变换的性质及Parseval定理2 离散时间傅里叶变换DTFT的定义 性质DTFT与Z变换的关系DTFT存在的条件3 DFTDFT定义 与Z变换的关系 DFT性质4 FFT5 DFT的应用 32 2 1节知识点1 DTFT的定义 正变换 反变换 基本性质 常见变换对 离散时间信号的频域 频谱 为周期函数 33 Condition DTFT 序列傅立叶变换 IDTFT 序列傅立叶反变换 注 周期序列不满足该绝对可和的条件 因此它的DTFT不存在 1 DTFT的计算及其性质 方法1 根据定义式求解 34 方法2 根据DTFT的性质求解 特别是对称性 35 a 序列分成实部与虚部时 其中 序列分成实部与虚部两部分 实部对应的FT具有共轭对称性 虚部和j一起对应的FT具有共轭反对称性 36 其中 b 序列分成共轭对称与共轭反对称时 序列的共轭对称部分xe n 对应着FT的实部XR ej 而序列的共轭反对称部分xo n 对应着FT的虚部jXI ej 37 例1 若序列h n 是实因果序列 其DTFT的实部如下式 HR ej 1 cos 求序列h n 及其傅里叶变换H ej 解 38 39 40 2 Z变换表示法 1 级数形式 定义 2 解析表达式 根据常见公式 注意 表示收敛域上的函数 同时注明收敛域 3 Z变换收敛域的特点 1 收敛域是一个圆环 有时可向内收缩到原点 有时可向外扩展到 只有x n n 的收敛域是整个Z平面2 在收敛域内没有极点 X z 在收敛域内每一点上都是解析函数 41 4 几类序列Z变换的收敛域 1 有限长序列 X z x n z n n1 n n2 0 n1 n n2000Rx n1 0 n2 Rx z 展开式出现z的正幂 Z变换的收敛域包括 点是因果序列的特征 42 3 左边序列X z x n z n n1 n n2 n1 n1 n2 0 z 0 0Rx Rx z Rx Rx Rx 空集 43 5 部分分式法进行逆Z变换求极点将X z 分解成部分分式形式通过查表 对每个分式分别进行逆Z变换注 左边序列 右边序列对应不同收敛域将部分分式逆Z变换结果相加得到完整的x n 序列6 Z变换的性质移位 反向 乘指数序列 卷积 44 常用序列z变换 可直接使用 45 7 DTFT与Z变换的关系 采样序列在单位圆上的Z变换等于该序列的DTFT序列频谱存在的条件 Z变换的收敛域包含单位圆 8 Parseval定理重要应用 计算序列能量 即时域中对序列求能量与频域中求能量是一致 46 分析计算题 计算证明 分析问答 本章典型题型与习题讲解 47 48 3 逆Z变换的计算 方法1 用留数定理求逆Z变换 求逆z变换时特别需要注意收敛域的范围 收敛域不同 逆z变换的结果是不同的 如果没有明确告诉收敛域的范围 则求逆z变换时需要讨论 49 解 有两个极点 因为收敛域总是以极点为界 因此收敛域有以下三种情况 三种收敛域对应三种不同的原序列 令 因为c内无极点 x n 0 C内有极点0 但z 0是一个n阶极点 改为求圆外极点留数 圆外极点有 50 那么 C内有极点0 5 51 C内有极点0 5 0 但0是一个n阶极点 改成求c外极点留数 c外极点只有一个 即2 最后得到 3 当收敛域 52 n 0 由收敛域判断 这是一个因果序列 因此x n 0 C内有极点0 5 2 或者这样分析 C内有极点0 5 2 0 但0是一个n阶极点 改成求c外极点留数 c外无极点 所以x n 0 最后得到 53 解 54 c内有极点0 5 0 但0是一个n阶极点 改求c外极点留数 c外极点只有2 最后得到 55 c内有极点0 5 2 0 但极点0是一个n阶极点 改成求c外极点留数 可是c外没有极点 因此 最后得到 56 4 时间信号与频谱信号波形之间的一般关系 57 1 零极点分布对系统因果 稳定性的影响 稳定性 收敛域包括单位圆 如果系统函数H z 的收敛域包括单位圆 则系统稳定 反之 如果系统稳定 则系统函数H z 的收敛域包括单位圆 5 离散系统的Z域分析方法 因果性 稳定性的判断 58 Causality 因果性 inthez domain 如果系统函数H z 的极点都在某个圆内 收敛域在圆外 则系统为因果系统 反之 如果系统为因果系统 则系统函数H z 的极点都在某个圆内 59 因果 稳定系统 2 利用零极点分布确定系统的频率特性 60 2 2节知识点 1 周期序列的离散傅里叶级数2 傅里叶变换表示式3 离散信号的傅氏变换与模拟信号的傅氏变换的关系 2 3节知识点1 DFT的定义2 DF与Z变换 DTFT的关系3 DFT隐含的周期性4 DFT的性子 61 DFS变换对 其中 62 DFT变换对 其中 63 1 DFT与IDFT的计算 性质 DFT成立的条件 k 0 1 N 1 n 0 1 N 1 根据定义式来计算 64 DFT的隐含周期性 DFT隐含有周期性 周期为N有限N长序列x n 的N点离散傅里叶变换 DFT X k 也可以定义为x n 的周期延拓序列X n N的离散傅里叶级数 DFS 的主值序列 65 DFT的共轭对称 a 如果其中 66 则 其中 67 b 如果 其中 68 则 其中 69 实序列的DFT对称性质归纳如下 70 实序列对称性的应用 1 用单次N点DFT实现两个实序列的N点DFT 71 2 用单次N点DFT计算一个实序列的2N点DFT 72 3 循环卷积的计算方法 循环卷积与线性卷积的关系 用DFT计算线性卷积的方法 设x1 n 0 n M 1 x2 n 0 n N 1 循环卷积 L取M N中较长的一个 设M N 则L M 较短的一个需要补0至L 两个序列的长度要求相等 循环卷积可以用DFT FFT 实现 用循环卷积实现线性卷积 L M N 1若不满足这个条件 则只在N 1 n M 1范围内两者相等 73 典型题型与习题讲解 分析计算题 计算证明 分析问答 判断 74 75 76 77 78 79 2 4频域采样定理如果x n 的长度为M 则只有当频域采样点数N M时 才有可由频域采样恢复原序列x n 否则将产生时域混叠现象 在z平面的单位圆上的N个等角点上 对z变换进行取样 将导致相应的时间序列周期延拓 延拓周期为N 80 81 82 重新构造两个长度为L的序列x n 和y n 方法 末尾补零对x n 和y n 进行圆周卷积 首先对两个序列进行周期延拓对延拓后的周期序列进行周期卷积对周期卷积的结果取主值区间 使圆周卷积等于线性卷积而不产生混淆的必要条件是L N M 1 步骤如下 83 圆周卷积与线性卷积的性质对比 84 85 时域 频域同时采样 对有限时宽的信号xa t 的时域波形和频域波形同时进行取样 其结果是时域波形和频域的都变成了离散的 周期性的波形 时域内的离散周期信号为 频域内离散周期信号为 它们之间形成DFS变换对 分别取它们的一个周期 得到x n 与X k 它们之间形成DFT变换对 86 第二部分快速傅里叶变换FFT 1 FFT计算原理 2 基2时间抽取算法和频率抽取算法 3 DFT R 2FFT算法的运算量比较 4 实数序列的FFT高效算法 5 FFT的应用 87 主要要求掌握的内容 1 FFT IFFT的计算方法 特点 DIT DIF的运算流图 2 FFT应用于频谱分析和快速卷积 3 DFT FFT的运算量计算 4 FFT减少运算量的途径 本章典型题型与习题讲解 作图题 作图 计算 88 N点的FFT的运算量为复乘 CM N 2 M N 2 log2N复加 CA NM Nlog2N 1 画出N点 例如8点 16点 FFT的运算流图 2 FFT的特点 FFT减少运算量的途径 DITDIF 3 FFT的运算量的计算 与DFT运算量的比较 FFT算法的基本思想 特点 编程方法 N点的DFT的运算量为复乘 CM N2复加 CA N N 1 89 例1 如果通用计算机的速度为平均每次复数乘需要5 s 每次复数加需要1 s 用来计算N 1024点DFT 问直接计算需要多少时间 用FFT计算呢 照这样计算 用FFT进行快速卷积对信号进行处理时 估计可实现实时处理的信号最高频率 解 N 1024 210直接计算DFT的运算量 复乘 CM N2 10242 220次复加 CA N N 1 1024 1023 1047552 直接计算DFT所用的时间为 90 用FFT计算DFT的运算量为复乘 CM N 2 M N 2 log2N 1024 2 10 5120复加 CA NM Nlog2N 1024 10 10240 用FFT计算DFT所用的时间为 快速卷积时 要计算一次N点FFT H k 已经计算好存入ROM中了 不需用FFT计算出H k N次频域复数乘法 H k X k 一次N点IFFT 也是用FFT实现的 所以 计算1024点快速卷积的计算时间约为 91 所以 每秒种处理的采样点数 即采样速率 为 3 实数序列的FFT高效算法 由采样定理可知 可实时处理的信号最高频率为 实际实现时 fmax要比这个小一些 92 计算一次N点IFFT得到 93 由DFT的共轭对称性可知 故 94 2 6节知识点 连续信号的频谱分析 利用DFT的选频性 过程 采样 截短 DFT效应 混叠 原因 采样 频谱泄漏泄漏 原因 截短栅栏效应 原因 DFTDFT的分辨率 95 DFT的应用 频谱分析 分段卷积 频谱分析 DFT代替频谱分析引起的误差 混叠现象 栅栏效应 截断效应 频谱泄漏 谱间干扰 提高谱分辨率的方法 分段卷积 重叠相加法 重叠保留法 96 第3章回顾 要点与难点 1 数字滤波器频响应能模仿模拟滤波器频响 2 因果稳定的模拟系统变换为数字系统仍为因果稳定的 S到Z平面的映射关系满足条件 97 主要内容 1 数字滤波器的分类及特性 2 数字信号系统的信号流图 3 IIR滤波器的结构和信号流图 直接型 级联型 并联型 4 FIR数字滤波器的结构和信号流图 直接型 快速卷积型 频率采样型 3 1数字滤波器的结构 98 本章主要要求掌握的内容 1 数字信号系统的信号流图描述方法 2 IIR滤波器的信号流图 直接型 级联型 并联型 3 FIR数字滤波器的实现流图 直接型 级联型 线性相位型 1 画出滤波器的实现结构 实现流图 99 IIR数字滤波器的直接I型结构 100 两条延时链中对应的延时单元内容完全相同 可合并 得 101 102 103 2 FIR数字滤波器 非递归结构 无反馈 但在频率采样结构等某些结构中也包含有反馈的递归部分 1 直接型 卷积型 横截型 2 级联型 3 线性相位型 4 频率采样型 104 105 直接型的转置 106 107 FIR数字滤波器 要点与难点 1 线性相位 系统的相频特性是频率的线性函数 群时延 偶对称 奇对称 108 2 四种线性相位FIR滤波器 109 四种线性相位FIRDF特性第一类 h n 偶 N奇 四种滤波器都可设计 第二类 h n 偶 N偶 可设计低 带通滤波器不能设计高通和带阻 第三类 h n 奇 N奇 只能设计带通滤波器 其它滤波器都不能设计 第四类 h n 奇 N偶 可设计高通 带通滤波器 不能设计低通和带阻 110 小结 1 相位特性只取决于h n 的对称性 而与h n 的值无关 2 幅度特性取决于h n 3 设计FIR数字滤波器时 在保证h n 对称的条件下 只要完成幅度特性的逼近即可 注意 当H 用 H 表示时 当H 为奇对称时 其相频特性中还应加一个固定相移 111 3 线性相位FIR滤波器的零点特性 零点必须是互为倒数的共轭对 112 113 114 115 作图题 典型题型与习题讲解 116 1 设系统用下面的差分方程描述 试画出系统的直接型 级联型和并联型结构 解 将上式进行Z变换 117 118 按照上式可以有两种级联型结构 a b 画出级联型结构如图 二 b 所示 画出级联型结构如图 二 a 所示 119 级联型结构图 二 a 级联型结构图 二 b 120 121 根据上式画出并联型结构如图 三 所示 122 第2部分 要点与难点 1 数字滤波器频响应能模仿模拟滤波器频响 2 因果稳定的模拟系统变换为数字系统仍为因果稳定的 S到Z平面的映射关系满足条件 123 主要内容 1 数字滤波器的设计方法 IIR的设计方法分类 2 理想滤波器的特性及逼近方法 理想滤波器的特性 连续函数逼近方法 3 模拟滤波器设计 几种逼近函数及特点 模拟滤波器逼近函数设计方法 4 模拟滤波器的数字仿真 冲激响应不变法 双线性变换法 5 数字滤波器的频率变换 IIR数字滤波器的设计 124 主要要求掌握的内容 1 数字滤波器的概念 技术指标 设计过程 设计方法 2 IIR数字滤波器的设计与模拟滤波器设计的关系 转换方法 冲激响应不变法 双线性变换法 3 Butterworth数字低通滤波器的设计 4 IIR数字滤波器频带变换方法 由低通 设计高通 带通 带阻滤波器 5 IIR滤波器的特点 综合设计题 计算 本章典型题型与习题讲解 125 思路 脉冲响应不变法 126 脉冲响应不变法的映射关系 127 S平面 Z平面 脉冲响应不变法满足变换的映射条件 但映射关系不是一一对应的 128 脉冲响应不变法优点 时域脉冲响应的模仿性能好频率坐标的变换是线性的 与 是线性关系 脉冲响应不变法缺点 有频谱周期延拓效应 只能用于带限的频响特性 如衰减特性很好的低通或带通 129 S1平面 Z平面 S平面 一一对应 双线性变换法 130 优点 S平面与Z平面是单值的一一对应关系 与 成非线性关系 缺点 不会产生混叠现象 映射关系 131 畸变 经双线性变换后 频率发生了非线性变化 相应地 数字滤波器的幅频特性在临界频率点会发生非线性变化 这种频率点的畸变可以通过预畸来加以校正 注意 预畸不能在整个频率段消除非线性畸变 只能消除模拟和数字滤波器在特征频率点的畸变 132 设计步骤 三 通过变量代换求H z 133 置换过程 频响 134 1 IIR滤波器的设计与实现 135 136 冲激不变法 或称为脉冲响应不变法 步骤 1 将模拟滤波器的传递函数Ha s 展开成部分分式的形式 2 将由第 1 步所得到的sk代入到下式中 3 设一个T值 并将T值和z ej 代入到上式中即可得到数字滤波器的频率响应 T的选取应按照滤波器最高截止频率的2倍以上选取 T过大时 频率混叠现象严重 3 IIR模拟滤波器到数字滤波器的转换方法 137 1 确定数字低通技术指标 通带截止频率 通带衰减 阻带截止频率 阻带衰减 2 将数字低通指标转换成模拟低通指标 和不变 边界频率的变换关系 频率预畸变 双线性变换法步骤 138 3 设计模拟低通滤波器 4 转换成数字低通滤波器 这里的采样间隔T可任意选取通常取T 1或T 2 139 4 IIR模拟滤波器到数字滤波器转换特性与对应关系 脉冲响应不变法 Ha s 的极点si映射到z平面 其极点变为eSiT稳定条件 产生频率混叠现象 不适合高通 带阻滤波器的设计 140 例 设h t 表示一模拟滤波器的单位冲激响应 用脉冲响应不变法 将此模拟滤波器转换成数字滤波器 h n 表示单位取样响应 即h n ha nT 确定系统函数H z 并把T作为参数 证明 T为任何值时 数字滤波器是稳定的 并说明数字滤波器近似为低通滤波器还是高通滤波器 Ha s 的极点s1 0 9 数字滤波器系统函数应为 141 H z 的极点为 画出T 0 5和T 1时的幅频响应 由图可以看出数字滤波器近似是低通滤波器 142 SZ 双线性变换法 稳定条件 消除了频率混叠 但产生了频率畸变现象 需要预畸变处理 143 5 已知模拟滤波器的传输函数为 2 试用脉冲响应不变法和双线性变换法分别将其转换为数字滤波器 设T 2s 1 解 1 用脉冲响应不变法 方法1直接按脉冲响应不变法设计公式 的极点为 144 代入T 2s 145 方法2直接套用4题 2 所得公式 为了套用公式 先对 为一常数 的分母配方 将化成4题中的标准形式 由于 所以 146 对比可知 套用公式得 147 或通分合并两项得 148 2 用双线性变换法 149 150 3 3 4节要点 1 从模拟滤波器低通原型到各种数字滤波器的频率变换了解设计IIR数字滤波器的两种变换法其中第二种要求会低通变换和高通变换2 从数字滤波器低通原型到各种数字滤波器的频率变换已知 会利用表 求 151 主要内容 1 FIR滤波器的设计方法分类 2 FIR滤波器的线性相位特性 线性相位特性 实现FIR滤波器的线性相位特性的条件 3 FIR滤波器的窗函数截取方法 理想滤波特性的傅立叶级数逼近 窗函数截取的吉布斯效应和解决方法 常用的窗函数 4 FIR滤波器的窗函数设计法设计步骤 5 FIR滤波器的频率取样设计法 第3部分FIR数字滤波器的设计 152 第3部分FIR数字滤波器 要点与难点 1 线性相位 系统的相频特性是频率的线性函数 群时延 偶对称 奇对称 153 3 4 2节要点 1 窗口设计法步骤 2 线性相位理想低通FIRDF的设计 会求h n 3 窗口函数对理想特性的影响 过渡带 肩峰 Gibbs效应 窗函数的要求 常用窗函数的名称 154 4 窗口法设计原理 卷积关系 155 156 窗口函数对理想特性的影响 改变了理想频响的边沿特性 形成过渡带 宽为 等于WR 的主瓣宽度 决定于窗长 过渡带两旁产生肩峰和余振 带内 带外起伏 取决于WR 的旁瓣 旁瓣多 余振多 旁瓣相对值大 肩峰强 与N无关 决定于窗口形状 N增加 过渡带宽减小 肩峰值不变 当N增加时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁叉车考试题及答案
- 铝厂晋升面试题及答案
- 报关实务考试题及答案
- 2025年甘肃省兰州石化职业技术大学教师选聘考试笔试试题(含答案)
- 2025年大庆市属国有企业招聘考试笔试试题(含答案)
- 从业人员法律法规培训试卷(附答案)
- 2024年院感知识竞赛备考试题库50题几答案(含各题型)
- 无菌技术理论知识考核试题及答案
- Ⅲ类射线装置辐射工作人员考试题(附答案)
- 2025年政府采购基本法律法规考试题库与答案
- (完整版)韩国商法
- 去骨瓣减压术的护理
- 慈善机构的财务管理
- 《武汉大学分析化学》课件
- 医学影像学与辅助检查
- 电力工程竣工验收报告
- 双J管健康宣教
- 如何提高美术课堂教学的有效性
- 水电站新ppt课件 第一章 水轮机的类型构造及工作原理
- 护理查对制度课件
- 市政工程占道施工方案
评论
0/150
提交评论