




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3课时 多项式与多项式相乘教学目标 【知识与技能】在具体情境中了解多项式乘法的意义,会利用法则进行简单的多项式乘法运算.【过程与方法】经历探索多项式与多项式乘法法则的过程,理解多项式与多项式相乘的运算算理,体会乘法分配律的作用及转化思想在解决问题过程中的应用,发展学生有条理的思考和语言表达能力.【情感态度】在解决问题的过程中了解数学的价值,发展“用数学”的信心.【教学重点】熟悉多项式与多项式乘法法则.【教学难点】理解多项式与多项式相乘的算理.教学过程:一、情景导入,初步认知1.如何进行单项式乘多项式的运算?你能举例说明吗?2.计算:(1)(3mn)2(m2+mn-n2);(2)2a2-a(2a-5b)-b(2a-b).【教学说明】单项式乘以多项式运算是多项式乘以多项式运算的基础,所以帮助学生回忆单项式乘多项式的运算非常重要.2、 思考探究,获取新知(一)独立思考1,计算:(1) m(b+n), a(b+n), (2) m(b+n)+a(b+n), (3) (m+a)(n+b).你能独立完成吗?如不能,与同伴合作试试?(二)合作交流:1,讨论:如果把(n+b)看成一个单项式,把(m+a)看成一个多项式,那么(m+a)(n+b)就可转化为刚刚学过的单项式乘以多项式,你同意这个观点吗?如同意请运算一下,看看结果如何?(m+a)(n+b)=m(n+b)+a(n+b)=mn+mb+an+ab方法交流:多项式乘以多项式,首先把它转化成单项式乘以多项式,然后应用乘法分配律进行运算。2,图形验证你懂吗? 下图1-1是一个长和宽分别为m,n的长方形纸片,如果它的长和宽分别增加a,b,所得长方形(图1-2)的面积可以怎样表示?学生独立思考后,全班交流,主要产生了四种解法:方法一:长方形的长为(m+a),宽为(n+b),所以面积可以表示为(m+a)(n+b);方法二:长方形可以看做是由四个小长方形拼成的,四个小长方形的面积分别为mn,mb,an,ab,所以长方形的面积可以表示为mn+mb+an+ab;方法三:长方形可以看做是由上下两个长方形组成的,上面的长方形面积为b(m+a),下面的长方形面积为n(m+a),这样长方形的面积就可以表示为n(m+a)+b(m+a),根据上节课单项式乘多项式的法则,结果等于nm+na+bm+ba;方法四:长方形可以看做是由左右两个长方形组成的,左边的长方形面积为m(b+n),右边的长方形面积为a(b+n),这样长方形的面积就可以表示为m(b+n)+a(b+n),根据上节课单项式乘多项式的法则,结果等于mb+mn+ab+an.将四种方法的过程板书到黑板上,由于求的是同一个长方形的面积,于是我们得到:(m+a)(n+b)=n(m+a)+b(m+a)=m(b+n)+a(b+n)=mn+mb+an+ab教师引导学生观察这个等式,并启发性的将等式板书为以下形式:(m+a)(n+b)=n(m+a)+b(m+a)或(m+a)(n+b)=m(b+n)+a(b+n)或(m+a)(n+b)=mn+mb+an+ab【教学说明】引导学生通过观察、实验、类比、归纳获得数学猜想.在上一课时中,学生已经有了利用图形面积探究法则的经验,因此用不同方法计算同一图形面积猜想出多项式乘法法则并不困难,顺利引出新课.观察上面的过程,回答下列问题:1.你能说出(m+a)(n+b)=n(m+a)+b(m+a)这一步运算的道理吗?2.结合这个算式(m+a)(n+b)=mn+mb+an+ab,你能说说如何进行多项式与多项式相乘的运算?3.归纳总结多项式与多项式相乘的运算法则.【归纳结论】多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.三、运用新知,深化理解1.见教材P18例3.2.下列说法不正确的是(D)A.两个单项式的积仍是单项式;B.两个单项式的积的次数等于它们的次数之和;C.单项式乘以多项式,积的项数与多项式项数相同;D.多项式乘以多项式,合并同类项前,积的项数等于两个多项式的项数之和.3.下列多项式相乘的结果是a2-a-6的是(B)A.(a-2)(a+3);B.(a+2)(a-3);C.(a-6)(a+1);D.(a+6)(a-1).4.下列计算正确的是(C)A.a3(-a2)=a5;B.(-ax2)3=-ax6;C.3x3-x(3x2-x+1)=x2-x;D.(x+1)(x-3)=x2+x-3.5.若(x+m)(x+n)=x2-6x+5,则(A)A.m,n同时为负;B.m,n同时为正;C.m,n异号;D.m,n异号且绝对值小的为正.6.要使(x-3)M=x2+x+N成立,且M是一个多项式,N是一个整数,则(C)A.M=x-4,N=12;B.M=x-5,N=15;C.M=x+4,N=-12;D.M=x+5,N=-15.7.计算:(1)(3x+1)(x-2);(2)(a2+3)(a-2)-a(a2-2a-2);(3)(x-5)(x+2);(4)(x+5)(x-2);(5)(x-5)(x-2);(6)(x+5)(x+2).答案:(1)3x2-5x-2;(2)5a-6;(3)x2-3x-10;(4)x2+3x-10;(5)x2-7x+10;(6)x2+7x+10.8.若(mx+y)(x-y)=2x2+nxy-y2,求m,n的值.解:左边=mx2-mxy+xy-y2=mx2+(1-m)xy-y2m=2,n=1-m n=-19.对于任意自然数,试说明代数式n(n+7)-(n-3)(n-2)的值都能被6整除.解:n(n+7)-(n-3)(n-2)=n2+7n-n2+5n-6=12n-6=6(2n-1).因为n为自然数,所以6(2n-1)一定是6的倍数.【教学说明】让学生通过不同形式的多项式相乘,灵活应用法则,针对解决不同问题时遇到的问题,积累解题经验.对于掌握程度比较好的学生,需要设置一些具有挑战性的题目,激发他们学习的动力.四,师生互动,课堂小结1.本节课学习了哪些知识?2.领悟到哪些解决问题的方法?感触最深的是什么?3.对于本节课的学习还有什么困惑?五,作业1.布置作业:教材“习题1.8”中第1、2、3题.2.完成同步练习册中本课时的练习.六,教学反思整式的乘法共由三课时组成,这一板块的知识前后衔接紧密、环环相扣,因此在这三课时中都采用了先回顾,再呈现问题情境的引入方法实现“温故知新”.但是在教学过程中,我们不应仅仅让学生感受知识需要“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 连词中考试题及答案
- 黎平教师考试题及答案
- 朗诵古诗考试题及答案
- 课件显微镜教学课件
- 肯德基厨房考试题及答案
- 城市管理网格员三级安全教育(班组级)考核试卷及答案
- 制线工操作考核试卷及答案
- 金属铬浸滤工特殊工艺考核试卷及答案
- 烫呢(光)挡车工上岗考核试卷及答案
- 金融国贸考试题及答案
- DBJ41-T 145-2015 三轴水泥土搅拌桩帷幕技术规程
- TSG07-2019锅炉安装工艺+焊接专用工艺卡+施工记录表
- 物业收费员的培训
- 总医院医共体信息化建设项目公开文件招投标书范本
- 2024年世界职业院校技能大赛高职组“声乐、器乐表演组”赛项参考试题库(含答案)
- 设计版权授权合同范例
- 《吉林省生态环境保护行政处罚自由裁量权细化标准》
- 中国心力衰竭诊断和治疗指南2024解读(完整版)
- 硬件测试岗位招聘笔试题及解答(某大型集团公司)
- GB/T 44535-2024塑料试样线性尺寸的测定
- 儿童社区获得性肺炎管理指南(2024修订)
评论
0/150
提交评论