翻译原文-不完整测量数据的概念建构.pdf_第1页
翻译原文-不完整测量数据的概念建构.pdf_第2页
翻译原文-不完整测量数据的概念建构.pdf_第3页
翻译原文-不完整测量数据的概念建构.pdf_第4页
翻译原文-不完整测量数据的概念建构.pdf_第5页
已阅读5页,还剩8页未读 继续免费阅读

翻译原文-不完整测量数据的概念建构.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

UNSUSPECTEDRELATIONSHIPSWHICHAREOFINTERESTORVALUETOTHEDATABASESOWNERS,ORDATAMINERS9DUETOTHELARGENUMBEROFDIMENSIONALITYANDTHEHUGEVOLUMEOFDATA,TRADITIONALSTATISTICALMETHODSHAVETHEIRLIMITATIONSINDATAMININGTOMEETTHECHALLENGEOFDATAMINING,ARTICIALINTELLIGENCEBASEDHUMANCOMPUTERINTERACTIVETECHNIQUESHAVEBEENWIDELYUSEDINDATAMINING3,16CONCEPTUALCONSTRUCTIONONINCOMPLETESURVEYDATASHOUHONGWANGA,HAIWANGBADEPARTMENTOFMARKETING/BUSINESSINFORMATIONSYSTEMS,CHARLTONCOLLEGEOFBUSINESS,UNIVERSITYOFMASSACHUSETTSDARTMOUTH,285OLDWESTPORTROAD,NORTHDARTMOUTH,MA027472300,USABDEPARTMENTOFCOMPUTERSCIENCE,UNIVERSITYOFTORONTO,TORONTO,ON,CANADAM5S3G4RECEIVED22MARCH2003RECEIVEDINREVISEDFORM9SEPTEMBER2003ACCEPTED20OCTOBER2003AVAILABLEONLINE26NOVEMBER2003ABSTRACTTHERAWSURVEYDATAFORDATAMININGAREOFTENINCOMPLETETHEISSUESOFMISSINGDATAINKNOWLEDGEDISCOVERYAREOFTENIGNOREDINDATAMININGTHISARTICLEPRESENTSTHECONCEPTUALFOUNDATIONSOFDATAMININGWITHINCOMPLETESURVEYDATA,ANDPROPOSESQUERYPROCESSINGFORKNOWLEDGEDISCOVERYANDASETOFQUERYFUNCTIONSFORTHECONCEPTUALCONSTRUCTIONINSURVEYDATAMININGTHROUGHACASE,THISPAPERDEMONSTRATESTHATCONCEPTUALCONSTRUCTIONONINCOMPLETEDATACANBEACCOMPLISHEDBYUSINGARTICIALINTELLIGENCETOOLSSUCHASSELFORGANIZINGMAPSC2112003ELSEVIERBVALLRIGHTSRESERVEDKEYWORDSINCOMPLETESURVEYDATASURVEYDATAMININGCONCEPTUALCONSTRUCTIONSELFORGANIZINGMAPSCLUSTERANALYSISKNOWLEDGEDISCOVERYQUERYPROCESSING1INTRODUCTIONDATAMININGISTHEPROCESSOFTRAWLINGTHROUGHDATAINTHEHOPEOFIDENTIFYINGINTERPRETABLEPATTERNSDATAMININGISDIERENTFROMTRADITIONALSTATISTICALANALYSISINTHATITISAIMEDATNDINGWWWELSEVIERCOM/LOCATE/DATAKDATAWHENANDWHYCERTAINTYPESOFVALUESAREOFTENMISSINGWHATVARIABLESARECORRELATEDINTERMSOFHAVINGMISSINGVALUESATTHESAMETIMETHESEVALUABLEPIECESOFKNOWLEDGECANBEDISCOVEREDONLYAFTERTHEMISSINGPARTOFTHEDATASETISFULLYEXPLOREDTHISPAPERDISCUSSESTHEISSUEOFMISSINGDATAINMININGSURVEYDATABASESFORKNOWLEDGEDISCOVERY,PRESENTSTHECONCEPTUALFOUNDATIONSOFCONCEPTUALCONSTRUCTION,ANDPROPOSESASETOFQUERYFUNCTIONSFORCONCEPTUALCONSTRUCTIONINSOMBASEDDATAMININGTHERESTOFTHEPAPERISORGANIZEDASFOLLOWSSECTION2DISCUSSESTHEISSUESOFMISSINGDATARELATEDTODATAMININGSECTION3INTRODUCESSOMFORCONCEPTUALCONSTRUCTIONONINCOMPLETEDATASECTION4SUGGESTSFOURCONCEPTSASKNOWLEDGEDISCOVERYINDATAMININGWITHINCOMPLETEDATAITPROVIDESASCHEMEOFCONCEPTUALCONSTRUCTIONONINCOMPLETEDATAUSINGSOMSECTION5PROPOSESAQUERYTOOLTHATISUSEDTOMANIPULATESOMFORCONCEPTUALCONSTRUCTIONSECTION6PRESENTSACASESTUDYTHATAPPLIESTHEQUERYTOOLTOMANIPULATETHESOMFORTHECONCEPTUALCONSTRUCTIONONASTUDENTOPINIONSURVEYDATASETFINALLY,SECTION7OERSCONCLUDINGREMARKS2ISSUESOFMISSINGDATAINCOMPLETEDATASETSAREUBIQUITOUSINDATAMININGTHEREHAVEBEENMANYTREATMENTSOFMISSINGDATAONEOFTHECONVENIENTSOLUTIONSTOINCOMPLETEDATAISTOELIMINATEFROMTHEDATASETTHOSERECORDSTHATAREMISSINGVALUESTHIS,HOWEVER,IGNORESPOTENTIALLYUSEFULINFORMATIONINTHOSERECORDSINCASESWHERETHEPROPORTIONOFMISSINGDATAISLARGE,THECONCLUSIONSDRAWNFROMTHESCREENEDDATASETAREMORELIKELYBIASEDORMISLEADINGTHEREHAVEBEENMANYNONSTATISTICALTECHNIQUESFORDATAMININGTHESELFORGANIZINGMAPSSOMMETHODBASEDONKOHONENNEURALNETWORK12ISONEOFTHEPROMISINGTECHNIQUESSOMBASEDCLUSTERTECHNIQUESHAVEADVANTAGESOVEROTHERMETHODSFORDATAMININGDATAMININGTYPICALLYDEALSWITHVERYHIGHDIMENSIONALDATATHATIS,ANOBSERVATIONINTHEDATABASEFORDATAMININGISTYPICALLYDESCRIBEDBYALARGENUMBEROFVARIABLESTHECURSEOFDIMENSIONALITYTURNSSTATISTICALCORRELATIONSOFDATAINSIGNICANT,ANDTHUSMAKESSTATISTICALMETHODSPOWERLESSTHESOMMETHOD,HOWEVER,DOESNOTRELYONANYASSUMPTIONSOFSTATISTICALTESTS,ANDISCONSIDEREDASSWANG,HWANG/DATAHOWEVER,NOTALLMISSINGDATAARERELEVANTTOTHEDATAMINERC213SINTERESTHENCE,ANYSIMPLEBRUTEFORCESEARCHMETHODFORMISSINGDATAISNOTONLYINFEASIBLEFORAHUGEAMOUNTOFDATA,BUTALSOHELPLESSWHENTHEDATAMINERISTOIDENTIFYPROBLEMS,ORDEVELOPCONCEPTS,THROUGHDATAMININGTOIDENTIFYPROBLEMSORDEVELOPCONCEPTS,THEDATAMINERNEEDSATOOLTOOBSERVEUNSUSPECTEDPATTERNSOFTHEAVAILABLEDATAANDTHEMISSINGPARTSSELFORGANIZINGMAPSSOM12HAVEBEENWIDELYUSEDFORCLUSTERING,SINCESOMAREMORECOMPUTATIONALLYECIENTTHANTHEPOPULARKMEANSCLUSTERINGALGORITHMMOREIMPORTANTLY,SOMPROVIDEDATAVISUALIZATIONFORTHEDATAMINERTOVIEWHIGHDIMENSIONALDATA11RESEARCH14,16314SWANG,HWANG/DATAJVMIWHEREVMIJISTHENUMBEROFMISSINGVALUESINBOTHVARIABLESIANDJ,ANDVMIISTHENUMBEROFMISSINGVALUESINVARIABLEITHISCONCEPTDISCLOSESTHECORRELATIONOFTWOVARIABLESINTERMSOFMISSINGVALUESTHEHIGHERTHEVALUEVMIJVMIIS,THESTRONGERTHECORRELATIONOFMISSINGVALUESWOULDBE44CONDITIONALEECTSTHECONCEPTOFCONDITIONALEECTSREVEALSTHEPOTENTIALCHANGESOFTHECLUSTERSIDENTIEDIFTHEMISSINGVALUESHADCOMPLETEDC5DPJ8ZIKWHEREDPISTHECHANGESOFTHECLUSTERSPERCEIVEDBYTHEDATAMINER,8ZIREPRESENTSALLMISSINGVALUESOFVARIABLEI,ANDKISTHEPOSSIBLEVALUEVARIABLEIMIGHTHAVEFORTHESURVEYTYPICALLY,KFMAXMINPGWHEREMAXISTHEMAXIMALVALUEOFTHESCALE,MINISTHEMINIMALVALUEOFTHESCALE,ANDPISTHERANDOMVARIABLEWITHTHESAMEDISTRIBUTIONFUNCTIONOFTHEVALUESINTHECOMPLETEDATABYSETTINGDIERENTPOSSIBLEVALUESOFKFORTHEMISSINGVALUES,THEDATAMINERISABLETOOBSERVETHECHANGESOFCLUSTERSANDREDENETHEPROBLEMINSUMMARY,CONCEPTUALCONSTRUCTIONONINCOMPLETEDATAISAKNOWLEDGEDEVELOPMENTPROCESSTOCONSTRUCTNEWCONCEPTSONINCOMPLETEDATA,THEDATAMINERNEEDSTOIDENTIFYAPARTICULARPROBLEMASABASEFORTHECONSTRUCTIONFOURCONCEPTSONMISSINGDATAARERELIABILITY,HIDING,COMPLEMENTING,ANDCONDITIONALEECTSNEXT,WEDEVELOPASETOFQUERIESFORCONCEPTUALCONSTRUCTIONONINCOMPLETEDATAOUROBJECTIVEOFTHESEQUERIESISTOALLOWTHEDATAMINERTOCONDUCTTHEEXPERIMENTALPROCESSTHROUGHTHEUSEOFSOMINORDERTOCONSTRUCTNEWCONCEPTSRELATEDTOTHEPROBLEM5QUERYPROCESSINGFORCONCEPTUALCONSTRUCTIONQUERYTOOLSARECHARACTERIZEDBYSTRUCTUREDQUERYLANGUAGESQL,THESTANDARDQUERYLANGUAGEFORRELATIONALDATABASEMANAGEMENTSYSTEMSFORDATAMINING,ASTHEULTIMATEOBJECTIVEOFINFORMATIONRETRIEVALFROMTHEDATABASEISTHEFORMULATIONOFKNOWLEDGETHROUGHTHEUSEOFAVARIETYOFTECHNIQUES,ITISUNLIKELYTHATASINGLESTANDARDQUERYLANGUAGECANBECREATEDFORALLPURPOSESOFDATAMININGNEVERTHELESS,TOSUPPORTHUMANCOMPUTERCOLLABORATIONEECTIVELY,VISUALIZEDQUERYPROCESSINGISNECESSARYINDATAMINING5THISSTUDYDEVELOPSASETOFQUERYFUNCTIONSTHATASSISTTHEDATAMINERTOCONSTRUCTCONCEPTSRELATEDTOTHEMISSINGDATATHROUGHTHEC3VMIJXJABWHEREVMIISTHENUMBEROFMISSINGVALUESINVARIABLEI,XJISTHEVALUEOFVARIABLEJ,ANDABISTHERANGEOFVALUESOFXJTHISINDEXDISCLOSESTHEDEGREEOFUNCERTAINTYOFANSWERSTOTHESURVEYQUESTION,SUCHASDONOTKNOWANDNEUTRAL,ORTHEINTENTIONOFSYSTEMATICALMISSINGDATA,SUCHASDONOTWANTTOTELL43COMPLEMENTINGTHECONCEPTOFCOMPLEMENTINGREVEALSWHATVARIABLESAREMORELIKELYTOHAVEMISSINGVALUESAT316SWANG,HWANG/DATAJVMI57FINDC5DPJ8ZIKTHISQUERYFUNCTIONALLOWSTHEDATAMINERTOREPLACETHEMISSINGVALUESWITHHYPOTHETICALVALUES,ANDOBSERVETHECHANGESOFTHECLUSTERSTHEHYPOTHETICALVALUESCOULDBEANYBETWEENTHEPOSSIBLEMAXIMALANDMINIMALVALUESINSTEADOFRETURNINGASPECICNUMBER,THISQUERYFUNCTIONRETURNSVARIOUSMAPSFORTHEDATAMINERTOCOMPARETHECLUSTERSUSINGDIERENTKVALUESBASEDONWHATIFTRIALS,THEDATAMINERISABLETOPERCEIVETHEIMPACTSOFTHEMISSINGVALUESONTHETHISQUERYFUNCTIONALLOWSTHEDATAMINERTONDTHECORRELATIONOFTHEMISSINGVALUESINTWOVARIABLESUSINGTHISQUERY,THEDATAMINERRSTCHOOSESTWOVARIABLESTOBEINVESTIGATEDTHATARERELEVANTTOTHEPROBLEM,ANDTHENNDSOUTHOWOFTENTHETWOVARIABLESMIGHTHAVEMISSINGVALUESTOGETHERTHETWOVARIABLESTHATMIGHTHAVECORRELATIONOFMISSINGVALUESANDTHERANGEOFTHEKNOWNVALUESINONEVARIABLE,ANDRECEIVESTHENUMBEROFOBSERVATIONSWITHMISSINGVALUESINTHEOTHERVARIABLETHEDATAMINERMIGHTBEINTERESTEDINAPARTICULARVARIABLEUSINGTHISQUERY,THEDATAMINERISALLOWEDTOCHECKWHETHERTHECLUSTERSOBSERVEDARERELIABLEINTERMSOFTHEPARTICULARVARIABLE55FINDC3VMIJXJABTHISQUERYFUNCTIONALLOWSTHEDATAMINERTONDTHECORRELATIONOFTHEMISSINGVALUESINONEVARIABLEANDTHEVALUERANGEINANOTHERVARIABLETHISCORRELATIONPROVIDESKNOWLEDGEAFTERCHOOSINGVARIABLESANDIDENTIFYINGCLUSTERSTHROUGHSOM,THEDATAMINERWOULDLIKETOKNOWHOWRELIABLEOFTHEOBSERVEDCLUSTERSARETHISQUERYALLOWSTHEDATAMINERTONDSMSCINTHEVARIABLESUSEDFORTHESOMTRAININGIFTHEVALUESMSCISHIGH,THEDATAMINERCANNDTHERELIABILITYFORINDIVIDUALVARIABLES,ASDESCRIBEDNEXT52SAVEANDRETRIEVETHESOMTHISQUERYISAGENERALOPERATIONFORSAVINGANDRETRIEVINGTHESOMALONGWITHALLTHESETTINGFORPARAMETERS,VARIABLESOFTHEDATASAMPLESTHEDATAMINERISALLOWEDTOCOMPAREANUMBEROFSOMRESULTSTOCONSTRUCTCONCEPTSONINCOMPLETEDATA318SWANG,HWANG/DATASPECICALLY,THETEXTBOOKSDONOTGIVEMUCHHELPALTHOUGHV20HASTHEHIGHESTRATEOFMISSINGVALUES,MISSINGVALUESDONOTHAVEASIGNICANTIMPACTONTHEPROBLEMIDENTIEDINTHISCASE,V20HADTHEHIGHESTRATEOFMISSINGVALUES86THEDATAMINERWOULDLIKETOSEEPROBLEMIDENTIED320SWANG,HWANG/DATA016JV202021JV203028JV204024JV205GFORTHECOMPLETEDATAAFTERSETTINGTHESEVALUESFORTHEMISSINGVALUESOFV20,NEWTRIALDATAWEREUSEDFORSOMTOGENERATEMAPSUSINGTHESAMETOPOLOGYOFTHESOMFORTHECOMPLETEDATA,THEWHATIFTRIALSWERECONDUCTEDASSHOWNINFIG3,THEOVERALLCONCLUSIONINTHISCASEWASTHATTHEMISSINGVALUESINV20DIDNOTHAVESIGNICANTIMPACTONTHEANALYSIS,VARIABLESV1,V14,V16,V18,ANDV20THATRECEIVEDLOWVALUESWEREFOUNDTOBEPARTICULARLYRELEVANTTOTHEPROBLEMOFINEECTIVETEACHING,ASSUMMARIZEDINTHERSTTHREECOLUMNSOFTABLE1INCOMPLETEDATAWERETHENAPPLIEDTOCONSTRUCTNEWCONCEPTSOFTHEPROBLEM61C1SMSCALTHOUGHTHERATEOFINCOMPLETEOBSERVATIONSFORTHEENTIRESURVEYWASASHIGHAS37,SMSCINTERMSOFTHEVERYRELEVANTVARIABLESV1,V14,V16,V18,ANDV20WAS52,INDICATINGTHATTHEPROBLEMINITIALLYIDENTIEDWASGENERALLYVALID62C2VMIVCIAMONGTHEVEVARIABLES,THERATEOFMISSINGVALUESINV20WASTHEHIGHESTAT86,INDICATINGTHATTHEDEPENDABILITYOFINEECTIVETEACHINGONTHISVARIABLEIE,THEUSEFULNESSOFTHETEXTBOOKANDTEACHINGMATERIALMIGHTNOTBEASRELIABLEASOTHERVERYRELEVANTVARIABLES63C3VMIJXJABTHERATEOFMISSINGVALUESINV16WAS22HOWEVER,521OFTHEMISSINGVALUESCAMEFROMTHEOBSERVATIONSWITHXV151,3THISINDICATEDTHATSTUDENTSWHOWERENOTSATISEDWITHPROMPTGRADINGOFTENDISREGARDEDWHETHERTHEYRECEIVEDHELPFULCOMMENTSFORTHEIRWORK64C4VMIJVMITHERATEOFMISSINGVALUESOFV14WAS37HOWEVER,THEMISSINGVALUESOFV14ANDV10WEREHIGHLYCORRELATEDWITHVMV14V10VMV14336THISINDICATEDTHATSTUDENTSWHOOMITTEDTHEOPINIONONTHELEARNINGEXPERIENCEFROMTHECOURSEOFTENDISREGARDEDWHETHERTHETESTSORASSIGNMENTSWEREAPPROPRIATELYDESIGNED65C5DPJ8ZIKANEXPERIMENTALTESTOFTHEPROPOSEDMETHODCLEARLY,THESCALEOFDATAMININGINTHISCASESTUDYISCEPTUALCONSTRUCTIONONINCOMPLETEDATAUSINGTHESEQUERYFUNCTIONS,THEDATAMINERISALLOWEDTOCONSTRUCTNEWCONCEPTSRELATEDTOTHEPROBLEMIDENTIEDFORDATAMININGTHROUGHTHEREALWORLDCASE,ITHASBEENDEMONSTRATEDTHATTHEMODELOFCONCEPTUALCONSTRUCTIONCANBETTERBEUSEDFORKNOWLEDGEDISCOVERYRATHERSMALLINGENERAL,DATAMININGISAPPLIEDONMUCHLARGERDATASETSTHANTHISEXAMPLEINTHEASPECTSOFSAMPLESIZEANDDIMENSIONALITY7CONCLUSIONSINTHEDATAMININGELD,INCOMPLETEDATAAREOFTENMISTREATEDTHISSTUDYPROPOSESCONCEPTUALCONSTRUCTIONONINCOMPLETEDATAFOURCATEGORIESOFCONCEPTSONMISSINGDATAAREPROPOSEDTHEYARERELIABILITYOFTHEPROBLEMIDENTIED,INTENTIONOFDATAHIDING,COMPLEMENTINGOFMISSINGVALUESINTWOVARIABLES,ANDCONDITIONALEECTSOFTHEMISSINGDATASOMARESELECTEDASTHETOOLFORCONCEPTUALCONSTRUCTIONDUETOTHEIRADVANTAGESINCLUSTERINGANDDATAVISUALIZATIONBUILDINGONSOMCLUSTERINGANALYSIS,THISPAPERTHENSUGGESTSSEVENCATEGORIESOFQUERYFUNCTIONSFORCONFIG3EXAMPLESOFSOMFORWHATIFTRIALSSWANG,HWANG/DATAKNOWLEDGEENGINEERING492004311323321KNOWLEDGEDISCOVERYINDATABASESISAGROWINGELDGENERALLY,KNOWLEDGEDISCOVERYSTARTSWITHTHEORIGINALPROBLEMIDENTICATIONYETTHEVALIDATIONOFTHEPROBLEMIDENTIEDISTYPICALLYBEYONDTHEDATABASEANDGENERICSTATISTICALALGORITHMSTHEMSELVESDURINGTHEKNOWLEDGEDISCOVERYPROCESS,NEWCONCEPTSMUSTBECONSTRUCTEDTHROUGHDEMYSTIFYINGTHEDATAINCONCLUSION,CONCEPTUALCONSTRUCTIONONINCOMPLETEDATAPROVIDESEECTIVETECHNIQUESFORKNOWLEDGEDEVELOPMENTSOTHATTHEDATAMINERISALLOWEDTOINTERPRETTHEDATAMININGRESULTSBASEDONTHEPARTICULARPROBLEMDOMAINANDHIS/HERPERCEPTIONOFTHEMISSINGDATAFUTUREWORKINCLUDESIMPLEMENTINGTHESOFTWARESYSTEMONAMAINFRAMEBASEDDATABASESYSTEMANDFURTHEREVALUATINGTHEPROPOSEDAPPROACHONDATASETSWITHAMUCHLARGERSCALEACKNOWLEDGEMENTSTHEAUTHORSAREINDEBTEDTOTWOANONYMOUSREFEREESFORTHEIRVALUABLECOMMENTSFORTHEREVISIONOFTHISPAPERV18TESTANDASSIGNMENTSPROVIDEADEQUATEFEEDBACKONSTUDENTPROGRESSV19THEINSTRUCTORISWILLINGTOSCHEDULECONSULTATIONTIMEWITHTHESTUDENTSV20THETEXTBOOKSANDCOURSEMATERIALAREUSEFULV21INCOMPARISONTOOTHERINSTRUCTORS,THISINSTRUCTORISANEECTIVETEACHERREFERENCES1CCAGGARWAL,SPARTHASARATHY,MININGMASSIVELYINCOMPLETEDATASETSBYCONCEPTUALRECONSTRUCTION,INPROCEEDINGSOFTHE7THACMSIGKDDINTERNATIONALCONFERENCEONKNOWLEDGEDISCOVERYANDDATAMINING,ACMPRESS,NEWYORK,2001,PP2272322GBATISTA,MMONARD,ANANALYSISOFFOURMISSINGDATATREATMENTMETHODSFORSUPERVISEDLEARNING,APPLIEDARTICIALINTELLIGENCE175/620035195333RJBRACHMAN,TKHABAZA,WKLOESGEN,GPIATETSKYSHAPIRO,GESIMOUDIS,MININGBUSINESSDATABASES,COMMUNICATIONSOFTHEACM3911199642484SBRIN,RRASTOGI,KSHIM,MININGOPTIMIZEDGAINRULESFORNUMERICATTRIBUTES,IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING15220033243385LCHITTARO,CCOMBI,VISUALIZINGQUERIESONDATABASEOFTEMPORALHISTORIESNEWMETAPHORSANDTHEIREVALUATION,DATAANDKNOWLEDGEENGINEERING442020032392646GDEBOECK,TKOHONEN,VISUALEXPLORATIONSINFINANCEWITHSELFORGANIZINGMAPS,SPRINGERVERLAG,LONDON,UK,19987APDEMPSTER,NMLAIRD,DBRUBIN,MAXIMUMLIKELIHOODFROMINCOMPLETEDATAVIATHEEMALGORITHM,JOURNALOFTHEROYALSTATISTICALSOCIETY,SERIESBMETHODOLOGICAL39119771388UFAYYAD,GPIATETSKYSHAPIRO,PSMYTH,THEKDDPROCESSFOREXTRACTINGUSEFULKNOWLEDGEFROMVOLUMESOFDATA,COMMUNICATIONSOFTHEACM3911199627349DJHAND,DATAMININGSTATISTICSANDMORE,THEAMERICANSTATISTICIAN522199811211810ITJOLLIE,PRINCIPLECOMPONENTANALYSIS,SPRINGERVERLAG,NEWYORK,198611DAKEIM,HPKRIEGEL,VISUALIZATIONTECHNIQUESFORMININGLARGEDATABASESACOMPARISON,IEEETRANSACTIONSAPPENDIXATHEQUESTIONNAIREOFSTUDENTOPINIONOFTEACHERSSURVEYV1THEINSTRUCTOREXPLAINSDICULTCONCEPTSCLEARLYANDUNDERSTANDABLYV2CLASSSESSIONSAPPEARTOBECAREFULLYPLANNEDV3THEINSTRUCTORCONVEYSSTRONGINTERESTANDENTHUSIASMV4STUDENTSAREENCOURAGEDTOEXPRESSTHEIRVIEWSANDPARTICIPATEINCLASSV5THEINSTRUCTORSHOWSAGENUINECONCERNFORSTUDENTPROGRESSV6THEINSTRUCTORSTIMULATESSTUDENTSTOTHINKFORTHEMSELVESV7EECTIVEUSEISMADEOFEXAMPLESANDILLUSTRATIONSV8THEINSTRUCTORSPEAKSINAWAYWHICHCANBECLEARLYUNDERSTOODV9THEINSTRUCTORMAKESITCLEARHOWEACHTOPICTSINTOTHECOURSEV10THISCOURSEWASAPOSITIVELEARNINGEXPERIENCEV11CLASSESAREHELDREGULARLYTOANAGREEDSCHEDULEV12THEVARIOUSPARTSOFTHECOURSEAREEECTIVELYCOORDINATEDV13COURSEREQUIREMENTSARECOMMUNICATEDCLEARLYANDEXPLICITLYV14TESTSANDASSIGNMENTSAREREASONABLEMEASURESOFSTUDENTLEARNINGV15WHEREAPPROPRIATE,STUDENTWORKISGRADEDPROMPTLYV16WHEREAPPROPRIATE,HELPFULCOMMENTSAREPROVIDEDWHENSTUDENTWORKISGRADEDV17THEREISCLOSEAGREEMENTBETWEENSTATEDCOURSEOBJECTIVESANDWHATISTAUGHT322SWANG,HWANG/DATAKNOWLEDGEENGINEERING492004311323ONKNOWLEDGEANDDATAENGINEERING86199692393812TKOHONEN,SELFORGANIZATIONANDASSOCIATIVEMEMORY,THIRDED,SPRINGERVERLAG,BERLIN,198913PLANGLEY,HSIMON,GBRADSHAW,JZYTKOW,SCIENTICDISCOVERYCOMPUTATIONALEXPLORATIONSOFTHECREATIVEPROCESSES,MITPRESS,CAMBRIDGE,MA,1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论