文档简介
UNSUSPECTEDRELATIONSHIPSWHICHAREOFINTERESTORVALUETOTHEDATABASESOWNERS,ORDATAMINERS9DUETOTHELARGENUMBEROFDIMENSIONALITYANDTHEHUGEVOLUMEOFDATA,TRADITIONALSTATISTICALMETHODSHAVETHEIRLIMITATIONSINDATAMININGTOMEETTHECHALLENGEOFDATAMINING,ARTICIALINTELLIGENCEBASEDHUMANCOMPUTERINTERACTIVETECHNIQUESHAVEBEENWIDELYUSEDINDATAMINING3,16CONCEPTUALCONSTRUCTIONONINCOMPLETESURVEYDATASHOUHONGWANGA,HAIWANGBADEPARTMENTOFMARKETING/BUSINESSINFORMATIONSYSTEMS,CHARLTONCOLLEGEOFBUSINESS,UNIVERSITYOFMASSACHUSETTSDARTMOUTH,285OLDWESTPORTROAD,NORTHDARTMOUTH,MA027472300,USABDEPARTMENTOFCOMPUTERSCIENCE,UNIVERSITYOFTORONTO,TORONTO,ON,CANADAM5S3G4RECEIVED22MARCH2003RECEIVEDINREVISEDFORM9SEPTEMBER2003ACCEPTED20OCTOBER2003AVAILABLEONLINE26NOVEMBER2003ABSTRACTTHERAWSURVEYDATAFORDATAMININGAREOFTENINCOMPLETETHEISSUESOFMISSINGDATAINKNOWLEDGEDISCOVERYAREOFTENIGNOREDINDATAMININGTHISARTICLEPRESENTSTHECONCEPTUALFOUNDATIONSOFDATAMININGWITHINCOMPLETESURVEYDATA,ANDPROPOSESQUERYPROCESSINGFORKNOWLEDGEDISCOVERYANDASETOFQUERYFUNCTIONSFORTHECONCEPTUALCONSTRUCTIONINSURVEYDATAMININGTHROUGHACASE,THISPAPERDEMONSTRATESTHATCONCEPTUALCONSTRUCTIONONINCOMPLETEDATACANBEACCOMPLISHEDBYUSINGARTICIALINTELLIGENCETOOLSSUCHASSELFORGANIZINGMAPSC2112003ELSEVIERBVALLRIGHTSRESERVEDKEYWORDSINCOMPLETESURVEYDATASURVEYDATAMININGCONCEPTUALCONSTRUCTIONSELFORGANIZINGMAPSCLUSTERANALYSISKNOWLEDGEDISCOVERYQUERYPROCESSING1INTRODUCTIONDATAMININGISTHEPROCESSOFTRAWLINGTHROUGHDATAINTHEHOPEOFIDENTIFYINGINTERPRETABLEPATTERNSDATAMININGISDIERENTFROMTRADITIONALSTATISTICALANALYSISINTHATITISAIMEDATNDINGWWWELSEVIERCOM/LOCATE/DATAKDATAWHENANDWHYCERTAINTYPESOFVALUESAREOFTENMISSINGWHATVARIABLESARECORRELATEDINTERMSOFHAVINGMISSINGVALUESATTHESAMETIMETHESEVALUABLEPIECESOFKNOWLEDGECANBEDISCOVEREDONLYAFTERTHEMISSINGPARTOFTHEDATASETISFULLYEXPLOREDTHISPAPERDISCUSSESTHEISSUEOFMISSINGDATAINMININGSURVEYDATABASESFORKNOWLEDGEDISCOVERY,PRESENTSTHECONCEPTUALFOUNDATIONSOFCONCEPTUALCONSTRUCTION,ANDPROPOSESASETOFQUERYFUNCTIONSFORCONCEPTUALCONSTRUCTIONINSOMBASEDDATAMININGTHERESTOFTHEPAPERISORGANIZEDASFOLLOWSSECTION2DISCUSSESTHEISSUESOFMISSINGDATARELATEDTODATAMININGSECTION3INTRODUCESSOMFORCONCEPTUALCONSTRUCTIONONINCOMPLETEDATASECTION4SUGGESTSFOURCONCEPTSASKNOWLEDGEDISCOVERYINDATAMININGWITHINCOMPLETEDATAITPROVIDESASCHEMEOFCONCEPTUALCONSTRUCTIONONINCOMPLETEDATAUSINGSOMSECTION5PROPOSESAQUERYTOOLTHATISUSEDTOMANIPULATESOMFORCONCEPTUALCONSTRUCTIONSECTION6PRESENTSACASESTUDYTHATAPPLIESTHEQUERYTOOLTOMANIPULATETHESOMFORTHECONCEPTUALCONSTRUCTIONONASTUDENTOPINIONSURVEYDATASETFINALLY,SECTION7OERSCONCLUDINGREMARKS2ISSUESOFMISSINGDATAINCOMPLETEDATASETSAREUBIQUITOUSINDATAMININGTHEREHAVEBEENMANYTREATMENTSOFMISSINGDATAONEOFTHECONVENIENTSOLUTIONSTOINCOMPLETEDATAISTOELIMINATEFROMTHEDATASETTHOSERECORDSTHATAREMISSINGVALUESTHIS,HOWEVER,IGNORESPOTENTIALLYUSEFULINFORMATIONINTHOSERECORDSINCASESWHERETHEPROPORTIONOFMISSINGDATAISLARGE,THECONCLUSIONSDRAWNFROMTHESCREENEDDATASETAREMORELIKELYBIASEDORMISLEADINGTHEREHAVEBEENMANYNONSTATISTICALTECHNIQUESFORDATAMININGTHESELFORGANIZINGMAPSSOMMETHODBASEDONKOHONENNEURALNETWORK12ISONEOFTHEPROMISINGTECHNIQUESSOMBASEDCLUSTERTECHNIQUESHAVEADVANTAGESOVEROTHERMETHODSFORDATAMININGDATAMININGTYPICALLYDEALSWITHVERYHIGHDIMENSIONALDATATHATIS,ANOBSERVATIONINTHEDATABASEFORDATAMININGISTYPICALLYDESCRIBEDBYALARGENUMBEROFVARIABLESTHECURSEOFDIMENSIONALITYTURNSSTATISTICALCORRELATIONSOFDATAINSIGNICANT,ANDTHUSMAKESSTATISTICALMETHODSPOWERLESSTHESOMMETHOD,HOWEVER,DOESNOTRELYONANYASSUMPTIONSOFSTATISTICALTESTS,ANDISCONSIDEREDASSWANG,HWANG/DATAHOWEVER,NOTALLMISSINGDATAARERELEVANTTOTHEDATAMINERC213SINTERESTHENCE,ANYSIMPLEBRUTEFORCESEARCHMETHODFORMISSINGDATAISNOTONLYINFEASIBLEFORAHUGEAMOUNTOFDATA,BUTALSOHELPLESSWHENTHEDATAMINERISTOIDENTIFYPROBLEMS,ORDEVELOPCONCEPTS,THROUGHDATAMININGTOIDENTIFYPROBLEMSORDEVELOPCONCEPTS,THEDATAMINERNEEDSATOOLTOOBSERVEUNSUSPECTEDPATTERNSOFTHEAVAILABLEDATAANDTHEMISSINGPARTSSELFORGANIZINGMAPSSOM12HAVEBEENWIDELYUSEDFORCLUSTERING,SINCESOMAREMORECOMPUTATIONALLYECIENTTHANTHEPOPULARKMEANSCLUSTERINGALGORITHMMOREIMPORTANTLY,SOMPROVIDEDATAVISUALIZATIONFORTHEDATAMINERTOVIEWHIGHDIMENSIONALDATA11RESEARCH14,16314SWANG,HWANG/DATAJVMIWHEREVMIJISTHENUMBEROFMISSINGVALUESINBOTHVARIABLESIANDJ,ANDVMIISTHENUMBEROFMISSINGVALUESINVARIABLEITHISCONCEPTDISCLOSESTHECORRELATIONOFTWOVARIABLESINTERMSOFMISSINGVALUESTHEHIGHERTHEVALUEVMIJVMIIS,THESTRONGERTHECORRELATIONOFMISSINGVALUESWOULDBE44CONDITIONALEECTSTHECONCEPTOFCONDITIONALEECTSREVEALSTHEPOTENTIALCHANGESOFTHECLUSTERSIDENTIEDIFTHEMISSINGVALUESHADCOMPLETEDC5DPJ8ZIKWHEREDPISTHECHANGESOFTHECLUSTERSPERCEIVEDBYTHEDATAMINER,8ZIREPRESENTSALLMISSINGVALUESOFVARIABLEI,ANDKISTHEPOSSIBLEVALUEVARIABLEIMIGHTHAVEFORTHESURVEYTYPICALLY,KFMAXMINPGWHEREMAXISTHEMAXIMALVALUEOFTHESCALE,MINISTHEMINIMALVALUEOFTHESCALE,ANDPISTHERANDOMVARIABLEWITHTHESAMEDISTRIBUTIONFUNCTIONOFTHEVALUESINTHECOMPLETEDATABYSETTINGDIERENTPOSSIBLEVALUESOFKFORTHEMISSINGVALUES,THEDATAMINERISABLETOOBSERVETHECHANGESOFCLUSTERSANDREDENETHEPROBLEMINSUMMARY,CONCEPTUALCONSTRUCTIONONINCOMPLETEDATAISAKNOWLEDGEDEVELOPMENTPROCESSTOCONSTRUCTNEWCONCEPTSONINCOMPLETEDATA,THEDATAMINERNEEDSTOIDENTIFYAPARTICULARPROBLEMASABASEFORTHECONSTRUCTIONFOURCONCEPTSONMISSINGDATAARERELIABILITY,HIDING,COMPLEMENTING,ANDCONDITIONALEECTSNEXT,WEDEVELOPASETOFQUERIESFORCONCEPTUALCONSTRUCTIONONINCOMPLETEDATAOUROBJECTIVEOFTHESEQUERIESISTOALLOWTHEDATAMINERTOCONDUCTTHEEXPERIMENTALPROCESSTHROUGHTHEUSEOFSOMINORDERTOCONSTRUCTNEWCONCEPTSRELATEDTOTHEPROBLEM5QUERYPROCESSINGFORCONCEPTUALCONSTRUCTIONQUERYTOOLSARECHARACTERIZEDBYSTRUCTUREDQUERYLANGUAGESQL,THESTANDARDQUERYLANGUAGEFORRELATIONALDATABASEMANAGEMENTSYSTEMSFORDATAMINING,ASTHEULTIMATEOBJECTIVEOFINFORMATIONRETRIEVALFROMTHEDATABASEISTHEFORMULATIONOFKNOWLEDGETHROUGHTHEUSEOFAVARIETYOFTECHNIQUES,ITISUNLIKELYTHATASINGLESTANDARDQUERYLANGUAGECANBECREATEDFORALLPURPOSESOFDATAMININGNEVERTHELESS,TOSUPPORTHUMANCOMPUTERCOLLABORATIONEECTIVELY,VISUALIZEDQUERYPROCESSINGISNECESSARYINDATAMINING5THISSTUDYDEVELOPSASETOFQUERYFUNCTIONSTHATASSISTTHEDATAMINERTOCONSTRUCTCONCEPTSRELATEDTOTHEMISSINGDATATHROUGHTHEC3VMIJXJABWHEREVMIISTHENUMBEROFMISSINGVALUESINVARIABLEI,XJISTHEVALUEOFVARIABLEJ,ANDABISTHERANGEOFVALUESOFXJTHISINDEXDISCLOSESTHEDEGREEOFUNCERTAINTYOFANSWERSTOTHESURVEYQUESTION,SUCHASDONOTKNOWANDNEUTRAL,ORTHEINTENTIONOFSYSTEMATICALMISSINGDATA,SUCHASDONOTWANTTOTELL43COMPLEMENTINGTHECONCEPTOFCOMPLEMENTINGREVEALSWHATVARIABLESAREMORELIKELYTOHAVEMISSINGVALUESAT316SWANG,HWANG/DATAJVMI57FINDC5DPJ8ZIKTHISQUERYFUNCTIONALLOWSTHEDATAMINERTOREPLACETHEMISSINGVALUESWITHHYPOTHETICALVALUES,ANDOBSERVETHECHANGESOFTHECLUSTERSTHEHYPOTHETICALVALUESCOULDBEANYBETWEENTHEPOSSIBLEMAXIMALANDMINIMALVALUESINSTEADOFRETURNINGASPECICNUMBER,THISQUERYFUNCTIONRETURNSVARIOUSMAPSFORTHEDATAMINERTOCOMPARETHECLUSTERSUSINGDIERENTKVALUESBASEDONWHATIFTRIALS,THEDATAMINERISABLETOPERCEIVETHEIMPACTSOFTHEMISSINGVALUESONTHETHISQUERYFUNCTIONALLOWSTHEDATAMINERTONDTHECORRELATIONOFTHEMISSINGVALUESINTWOVARIABLESUSINGTHISQUERY,THEDATAMINERRSTCHOOSESTWOVARIABLESTOBEINVESTIGATEDTHATARERELEVANTTOTHEPROBLEM,ANDTHENNDSOUTHOWOFTENTHETWOVARIABLESMIGHTHAVEMISSINGVALUESTOGETHERTHETWOVARIABLESTHATMIGHTHAVECORRELATIONOFMISSINGVALUESANDTHERANGEOFTHEKNOWNVALUESINONEVARIABLE,ANDRECEIVESTHENUMBEROFOBSERVATIONSWITHMISSINGVALUESINTHEOTHERVARIABLETHEDATAMINERMIGHTBEINTERESTEDINAPARTICULARVARIABLEUSINGTHISQUERY,THEDATAMINERISALLOWEDTOCHECKWHETHERTHECLUSTERSOBSERVEDARERELIABLEINTERMSOFTHEPARTICULARVARIABLE55FINDC3VMIJXJABTHISQUERYFUNCTIONALLOWSTHEDATAMINERTONDTHECORRELATIONOFTHEMISSINGVALUESINONEVARIABLEANDTHEVALUERANGEINANOTHERVARIABLETHISCORRELATIONPROVIDESKNOWLEDGEAFTERCHOOSINGVARIABLESANDIDENTIFYINGCLUSTERSTHROUGHSOM,THEDATAMINERWOULDLIKETOKNOWHOWRELIABLEOFTHEOBSERVEDCLUSTERSARETHISQUERYALLOWSTHEDATAMINERTONDSMSCINTHEVARIABLESUSEDFORTHESOMTRAININGIFTHEVALUESMSCISHIGH,THEDATAMINERCANNDTHERELIABILITYFORINDIVIDUALVARIABLES,ASDESCRIBEDNEXT52SAVEANDRETRIEVETHESOMTHISQUERYISAGENERALOPERATIONFORSAVINGANDRETRIEVINGTHESOMALONGWITHALLTHESETTINGFORPARAMETERS,VARIABLESOFTHEDATASAMPLESTHEDATAMINERISALLOWEDTOCOMPAREANUMBEROFSOMRESULTSTOCONSTRUCTCONCEPTSONINCOMPLETEDATA318SWANG,HWANG/DATASPECICALLY,THETEXTBOOKSDONOTGIVEMUCHHELPALTHOUGHV20HASTHEHIGHESTRATEOFMISSINGVALUES,MISSINGVALUESDONOTHAVEASIGNICANTIMPACTONTHEPROBLEMIDENTIEDINTHISCASE,V20HADTHEHIGHESTRATEOFMISSINGVALUES86THEDATAMINERWOULDLIKETOSEEPROBLEMIDENTIED320SWANG,HWANG/DATA016JV202021JV203028JV204024JV205GFORTHECOMPLETEDATAAFTERSETTINGTHESEVALUESFORTHEMISSINGVALUESOFV20,NEWTRIALDATAWEREUSEDFORSOMTOGENERATEMAPSUSINGTHESAMETOPOLOGYOFTHESOMFORTHECOMPLETEDATA,THEWHATIFTRIALSWERECONDUCTEDASSHOWNINFIG3,THEOVERALLCONCLUSIONINTHISCASEWASTHATTHEMISSINGVALUESINV20DIDNOTHAVESIGNICANTIMPACTONTHEANALYSIS,VARIABLESV1,V14,V16,V18,ANDV20THATRECEIVEDLOWVALUESWEREFOUNDTOBEPARTICULARLYRELEVANTTOTHEPROBLEMOFINEECTIVETEACHING,ASSUMMARIZEDINTHERSTTHREECOLUMNSOFTABLE1INCOMPLETEDATAWERETHENAPPLIEDTOCONSTRUCTNEWCONCEPTSOFTHEPROBLEM61C1SMSCALTHOUGHTHERATEOFINCOMPLETEOBSERVATIONSFORTHEENTIRESURVEYWASASHIGHAS37,SMSCINTERMSOFTHEVERYRELEVANTVARIABLESV1,V14,V16,V18,ANDV20WAS52,INDICATINGTHATTHEPROBLEMINITIALLYIDENTIEDWASGENERALLYVALID62C2VMIVCIAMONGTHEVEVARIABLES,THERATEOFMISSINGVALUESINV20WASTHEHIGHESTAT86,INDICATINGTHATTHEDEPENDABILITYOFINEECTIVETEACHINGONTHISVARIABLEIE,THEUSEFULNESSOFTHETEXTBOOKANDTEACHINGMATERIALMIGHTNOTBEASRELIABLEASOTHERVERYRELEVANTVARIABLES63C3VMIJXJABTHERATEOFMISSINGVALUESINV16WAS22HOWEVER,521OFTHEMISSINGVALUESCAMEFROMTHEOBSERVATIONSWITHXV151,3THISINDICATEDTHATSTUDENTSWHOWERENOTSATISEDWITHPROMPTGRADINGOFTENDISREGARDEDWHETHERTHEYRECEIVEDHELPFULCOMMENTSFORTHEIRWORK64C4VMIJVMITHERATEOFMISSINGVALUESOFV14WAS37HOWEVER,THEMISSINGVALUESOFV14ANDV10WEREHIGHLYCORRELATEDWITHVMV14V10VMV14336THISINDICATEDTHATSTUDENTSWHOOMITTEDTHEOPINIONONTHELEARNINGEXPERIENCEFROMTHECOURSEOFTENDISREGARDEDWHETHERTHETESTSORASSIGNMENTSWEREAPPROPRIATELYDESIGNED65C5DPJ8ZIKANEXPERIMENTALTESTOFTHEPROPOSEDMETHODCLEARLY,THESCALEOFDATAMININGINTHISCASESTUDYISCEPTUALCONSTRUCTIONONINCOMPLETEDATAUSINGTHESEQUERYFUNCTIONS,THEDATAMINERISALLOWEDTOCONSTRUCTNEWCONCEPTSRELATEDTOTHEPROBLEMIDENTIEDFORDATAMININGTHROUGHTHEREALWORLDCASE,ITHASBEENDEMONSTRATEDTHATTHEMODELOFCONCEPTUALCONSTRUCTIONCANBETTERBEUSEDFORKNOWLEDGEDISCOVERYRATHERSMALLINGENERAL,DATAMININGISAPPLIEDONMUCHLARGERDATASETSTHANTHISEXAMPLEINTHEASPECTSOFSAMPLESIZEANDDIMENSIONALITY7CONCLUSIONSINTHEDATAMININGELD,INCOMPLETEDATAAREOFTENMISTREATEDTHISSTUDYPROPOSESCONCEPTUALCONSTRUCTIONONINCOMPLETEDATAFOURCATEGORIESOFCONCEPTSONMISSINGDATAAREPROPOSEDTHEYARERELIABILITYOFTHEPROBLEMIDENTIED,INTENTIONOFDATAHIDING,COMPLEMENTINGOFMISSINGVALUESINTWOVARIABLES,ANDCONDITIONALEECTSOFTHEMISSINGDATASOMARESELECTEDASTHETOOLFORCONCEPTUALCONSTRUCTIONDUETOTHEIRADVANTAGESINCLUSTERINGANDDATAVISUALIZATIONBUILDINGONSOMCLUSTERINGANALYSIS,THISPAPERTHENSUGGESTSSEVENCATEGORIESOFQUERYFUNCTIONSFORCONFIG3EXAMPLESOFSOMFORWHATIFTRIALSSWANG,HWANG/DATAKNOWLEDGEENGINEERING492004311323321KNOWLEDGEDISCOVERYINDATABASESISAGROWINGELDGENERALLY,KNOWLEDGEDISCOVERYSTARTSWITHTHEORIGINALPROBLEMIDENTICATIONYETTHEVALIDATIONOFTHEPROBLEMIDENTIEDISTYPICALLYBEYONDTHEDATABASEANDGENERICSTATISTICALALGORITHMSTHEMSELVESDURINGTHEKNOWLEDGEDISCOVERYPROCESS,NEWCONCEPTSMUSTBECONSTRUCTEDTHROUGHDEMYSTIFYINGTHEDATAINCONCLUSION,CONCEPTUALCONSTRUCTIONONINCOMPLETEDATAPROVIDESEECTIVETECHNIQUESFORKNOWLEDGEDEVELOPMENTSOTHATTHEDATAMINERISALLOWEDTOINTERPRETTHEDATAMININGRESULTSBASEDONTHEPARTICULARPROBLEMDOMAINANDHIS/HERPERCEPTIONOFTHEMISSINGDATAFUTUREWORKINCLUDESIMPLEMENTINGTHESOFTWARESYSTEMONAMAINFRAMEBASEDDATABASESYSTEMANDFURTHEREVALUATINGTHEPROPOSEDAPPROACHONDATASETSWITHAMUCHLARGERSCALEACKNOWLEDGEMENTSTHEAUTHORSAREINDEBTEDTOTWOANONYMOUSREFEREESFORTHEIRVALUABLECOMMENTSFORTHEREVISIONOFTHISPAPERV18TESTANDASSIGNMENTSPROVIDEADEQUATEFEEDBACKONSTUDENTPROGRESSV19THEINSTRUCTORISWILLINGTOSCHEDULECONSULTATIONTIMEWITHTHESTUDENTSV20THETEXTBOOKSANDCOURSEMATERIALAREUSEFULV21INCOMPARISONTOOTHERINSTRUCTORS,THISINSTRUCTORISANEECTIVETEACHERREFERENCES1CCAGGARWAL,SPARTHASARATHY,MININGMASSIVELYINCOMPLETEDATASETSBYCONCEPTUALRECONSTRUCTION,INPROCEEDINGSOFTHE7THACMSIGKDDINTERNATIONALCONFERENCEONKNOWLEDGEDISCOVERYANDDATAMINING,ACMPRESS,NEWYORK,2001,PP2272322GBATISTA,MMONARD,ANANALYSISOFFOURMISSINGDATATREATMENTMETHODSFORSUPERVISEDLEARNING,APPLIEDARTICIALINTELLIGENCE175/620035195333RJBRACHMAN,TKHABAZA,WKLOESGEN,GPIATETSKYSHAPIRO,GESIMOUDIS,MININGBUSINESSDATABASES,COMMUNICATIONSOFTHEACM3911199642484SBRIN,RRASTOGI,KSHIM,MININGOPTIMIZEDGAINRULESFORNUMERICATTRIBUTES,IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING15220033243385LCHITTARO,CCOMBI,VISUALIZINGQUERIESONDATABASEOFTEMPORALHISTORIESNEWMETAPHORSANDTHEIREVALUATION,DATAANDKNOWLEDGEENGINEERING442020032392646GDEBOECK,TKOHONEN,VISUALEXPLORATIONSINFINANCEWITHSELFORGANIZINGMAPS,SPRINGERVERLAG,LONDON,UK,19987APDEMPSTER,NMLAIRD,DBRUBIN,MAXIMUMLIKELIHOODFROMINCOMPLETEDATAVIATHEEMALGORITHM,JOURNALOFTHEROYALSTATISTICALSOCIETY,SERIESBMETHODOLOGICAL39119771388UFAYYAD,GPIATETSKYSHAPIRO,PSMYTH,THEKDDPROCESSFOREXTRACTINGUSEFULKNOWLEDGEFROMVOLUMESOFDATA,COMMUNICATIONSOFTHEACM3911199627349DJHAND,DATAMININGSTATISTICSANDMORE,THEAMERICANSTATISTICIAN522199811211810ITJOLLIE,PRINCIPLECOMPONENTANALYSIS,SPRINGERVERLAG,NEWYORK,198611DAKEIM,HPKRIEGEL,VISUALIZATIONTECHNIQUESFORMININGLARGEDATABASESACOMPARISON,IEEETRANSACTIONSAPPENDIXATHEQUESTIONNAIREOFSTUDENTOPINIONOFTEACHERSSURVEYV1THEINSTRUCTOREXPLAINSDICULTCONCEPTSCLEARLYANDUNDERSTANDABLYV2CLASSSESSIONSAPPEARTOBECAREFULLYPLANNEDV3THEINSTRUCTORCONVEYSSTRONGINTERESTANDENTHUSIASMV4STUDENTSAREENCOURAGEDTOEXPRESSTHEIRVIEWSANDPARTICIPATEINCLASSV5THEINSTRUCTORSHOWSAGENUINECONCERNFORSTUDENTPROGRESSV6THEINSTRUCTORSTIMULATESSTUDENTSTOTHINKFORTHEMSELVESV7EECTIVEUSEISMADEOFEXAMPLESANDILLUSTRATIONSV8THEINSTRUCTORSPEAKSINAWAYWHICHCANBECLEARLYUNDERSTOODV9THEINSTRUCTORMAKESITCLEARHOWEACHTOPICTSINTOTHECOURSEV10THISCOURSEWASAPOSITIVELEARNINGEXPERIENCEV11CLASSESAREHELDREGULARLYTOANAGREEDSCHEDULEV12THEVARIOUSPARTSOFTHECOURSEAREEECTIVELYCOORDINATEDV13COURSEREQUIREMENTSARECOMMUNICATEDCLEARLYANDEXPLICITLYV14TESTSANDASSIGNMENTSAREREASONABLEMEASURESOFSTUDENTLEARNINGV15WHEREAPPROPRIATE,STUDENTWORKISGRADEDPROMPTLYV16WHEREAPPROPRIATE,HELPFULCOMMENTSAREPROVIDEDWHENSTUDENTWORKISGRADEDV17THEREISCLOSEAGREEMENTBETWEENSTATEDCOURSEOBJECTIVESANDWHATISTAUGHT322SWANG,HWANG/DATAKNOWLEDGEENGINEERING492004311323ONKNOWLEDGEANDDATAENGINEERING86199692393812TKOHONEN,SELFORGANIZATIONANDASSOCIATIVEMEMORY,THIRDED,SPRINGERVERLAG,BERLIN,198913PLANGLEY,HSIMON,GBRADSHAW,JZYTKOW,SCIENTICDISCOVERYCOMPUTATIONALEXPLORATIONSOFTHECREATIVEPROCESSES,MITPRESS,CAMBRIDGE,MA,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人力资源效率优化2026年降本增效项目分析方案
- 综合医院护理院建设方案
- 公墓清明节工作方案
- 绿色办公实施方案范文
- 建设园区的方案有哪些
- 个人防诈骗工作方案
- 重庆矿山关闭实施方案
- 【《基于单片机的酿酒槽的温度检测与监控系统方案设计》12000字(论文)】
- 【《单侧供电网络中的相间电流保护方法的建模和仿真分析案例》2000字】
- 浅析我国新三板转板制度构建
- 绍兴金牡印染有限公司年产12500吨针织布、6800万米梭织布高档印染面料升级技改项目环境影响报告
- 成人呼吸支持治疗器械相关压力性损伤的预防
- DHA乳状液制备工艺优化及氧化稳定性的研究
- 2023年江苏省五年制专转本英语统考真题(试卷+答案)
- 三星-SHS-P718-指纹锁使用说明书
- 岳麓书社版高中历史必修三3.13《挑战教皇的权威》课件(共28张PPT)
- GC/T 1201-2022国家物资储备通用术语
- 污水管网监理规划
- GB/T 6730.65-2009铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法(常规方法)
- GB/T 35273-2020信息安全技术个人信息安全规范
- 《看图猜成语》课件
评论
0/150
提交评论