已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微 积 分 电 子 教 案 多元函数微积分 总复习 1 空间两点间距离公式 2 空间曲面方程 常见的曲面方程 球面 球心在 x0 y0 z0 半径为R 一 空间解析几何 柱面 二次柱面 平面 特殊平面 过原点的平面 平行于坐标轴的平面 坐标平面或平行于坐标平面的平面 特殊柱面 圆柱面 母线平行于z轴 准线是xy坐标面上以原点为中心 R为半径的一个圆 抛物柱面 x2 2py p 0 表示母线平行于z轴 准线是xy坐标面上的抛物线x2 2py p 0 的柱面 表示母线平行于y轴 准线是xz坐标面上的双曲线 的柱面 表示母线平行于z轴 准线是xy坐标面上的椭圆 的柱面 椭圆柱面 双曲柱面 旋转曲面 椭圆 绕x轴旋转椭球 截痕法 为了了解曲面的形状 用 截曲面得到的曲线可以判别曲面的形状 1 定义域 平面区域 2 几何意义 曲面 3 极限 二重极限 1 x y x0 y0 的方式是任意的 2 二元函数的极限运算法则与一元函数类似 4 f x y 在 x0 y0 连续必须满足的条件 f x y 在点 x0 y0 处有定义 二 多元函数 二元函数 二元初等函数在其有定义的区域内都是连续的 闭区域上连续函数的性质 在有界闭区域D上的二元连续函数 在D上必可取得它的最大值和最小值 在有界闭区域D上的二元连续函数f x y 对任意介于函数最大值与最小值之间的数c 在D上必可找到一点 x0 y0 使得f x0 y0 c 最大值和最小值定理 介值定理 1 定义 2 几何意义 二元函数在点M0 x0 y0 f x0 y0 处偏导数反映的是该函数在点M0沿x轴和y轴两个方向的变化率 3 求导法则 一元函数的求导法则同样适用 此时只要把另一个自变量作为常数处理 三 偏导数 4 高阶偏导数 二阶纯偏导数 二阶混合偏导数 两二阶混合偏导数相等的条件 二阶混合偏导数连续 5 多元复合函数与隐函数微分法 链式法则 全导数 全微分形式不变性 隐函数的求导公式 例9设其中f可微 证明 08 解 得证 例10设其中f g二阶可导 证明 05 证明 得证 6 经济意义 边际量 p2看成常量 即相关价格不变时 自身价格在p1的基础上再变动一个单位所增 减 的需求量 p1看成常量 即自身价格不变时 相关价格在p2的基础上再变动一个单位所增 减 的需求量 p2看成常量 即自身价格不变时 相关价格在p1的基础上再变动一个单位所增 减 的需求量 p1看成常量 即相关价格不变时 自身价格在p2的基础上再变动一个单位所增 减 的需求量 偏弹性 E11称为A商品需求量Q1对自身价格p1的 直接价格偏弹性 它表示相关价格p2不变时 自身价格p1变动1 所引起的需求量变动的百分数 四 全微分 可微的条件 函数z f x y 在点 x y 的某邻域内有连续的偏导数f x x y f y x y 则函数f x y 在点 x y 处可微 且dz f x x y dx f y x y dy 多元函数可微 偏导数存在与连续的关系 偏导数存在且连续 函数可微 偏导数存在 连续 近似计算公式 五 多元函数的极值和最值 1 极值存在的必要条件 一阶偏导数存在时 极值点的 驻点 极值点可以是驻点和偏导数不存在的点 B2 AC 0 则f x0 y0 是极值 且 当A 0 或C 0 时 f x0 y0 是极小值 当A 0 或C 0 时 f x0 y0 是极大值 B2 AC 0 则f x0 y0 不是极值 B2 AC 0 则f x0 y0 是否为极值需进一步讨论才能确定 2 极值存在的充分条件 有二阶连续偏导数 且 驻点 3 最值 驻点 偏导数不存在的点 定义区域边界上点的函数值比较 4 条件极值 拉格朗日乘数法 解出可能的极值点的坐标 再用以前的方法判断是否为极值点 构造函数 解方程组 5 最小二乘法 求经验公式 最小二乘法标准方程组 例11设两种产品的需求量 分别是其单价 的函数 总成本函数为则如何定价 才能使利润最大 05 解 令 得唯一驻点 解 利润极大 当定价为 利润最大 例11设两种产品的需求量 分别是其单价 的函数 总成本函数为则如何定价 才能使利润最大 05 例12某公司可通过电台及报纸两种方式做销售某商品的广告 根据统计资料 销售收入R 万元 与电台广告费用x1 万元 及报纸广告费用x2 万元 之间的关系有如下的经验公式 1 在广告费用不限的情况下 求最优广告策略 2 若提供的广告费用为1 5万元 求相应的最优广告策略 07 解 由 得唯一驻点 又因为利润函数在处的二阶偏导数分别为 所以利润函数在处达到极大值 从而也是最大值 2 若广告费用为1 5万元 则要求利润函数在满足条件下的极值 作拉格朗日函数 由 得唯一驻点 由于是实际问题 驻点唯一 所以利润函数在处取得最大值 即 广告费1 5万元全部用于报纸广告 可使利润最大 例13某企业生产某产品需要A B两种原料 当所用原料数量分别为x y时 产量为 现在用150元购买原料 A B两种原料的单价分别为5元与2元 问购进两种原料各多少 可使生产的数量最多 08 解 作拉格朗日函数 由 得唯一驻点 由于是实际问题 驻点唯一 所以产量在处取得最大值 即 购进A B两种原料分别为20和25 可使生产的产量最多 六 二重积分 1 定义 2 几何意义 当f x y 0时 二重积分是以区域D为底 以曲面z f x y 为顶的曲顶柱体的体积 数乘性 线性性 3 基本性质 保序性 区域可加性 保号性 1的积分 估值性 4 二重积分的计算 在直角坐标下的计算公式 在积分中要正确选择积分次序 Y 型 X 型 二重积分中值定理 设函数在闭区域上连续 为的面积 则在D上至少存在一点使得 在极坐标下的计算公式 在积分中注意使用对称性 极点在区域外 极点在区域边界 极点在区域内 极点被区域包围 多元函数微积分习题 应用 计算若干曲面围成的立体的体积 计算若干曲线围成的平面的面积 例14交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届河北省衡水化学高三第一学期期中教学质量检测模拟试题含解析
- 河南省新乡市第七中学2026届化学高三上期中检测模拟试题含解析
- 社区干洗服务方案
- 音乐美育实施方案
- 摄影摄像项目实施方案范文
- 马术集训活动方案策划书3
- 高炮广告制作合同范本
- 销售广告材料合同范本
- 陈列布展采购合同范本
- 高速护栏买卖合同范本
- 2025年度食品安全员考试试题(答案+解析)
- 2025年河北廊坊霸州市公安局公开招聘警务辅助人员100名考试笔试备考试题及答案解析
- 2025年氧化铝制取工职业技能鉴定经典试题含答案
- 企业并购方案协议书
- 《海滨小城》教学课件(第二课时)
- 下载食品安全法课件
- 流态固化土工程结算合同模板
- 2025广东广州市海珠区凤阳街道第四批招聘雇员5人考试笔试参考题库附答案解析
- 2025年新版超声产筛考试试题及答案
- 侍茄师初级练习测试卷
- 微课视频录制方案及效果评估
评论
0/150
提交评论