




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 1变化率与导数 导数的计算 第三编导数及其应用 要点梳理1 函数y f x 从x1到x2的平均变化率函数y f x 从x1到x2的平均变化率为 若 x x2 x1 y f x2 f x1 则平均变化率可表示为 基础知识自主学习 2 函数y f x 在x x0处的导数 1 定义称函数y f x 在x x0处的瞬时变化率 为函数y f x 在x x0处的导数 记作f x0 或y x x0 即f x0 2 几何意义函数f x 在点x0处的导数f x0 的几何意义是在曲线y f x 上点处的 相应地 切线方程为 x0 f x0 切线的斜率 y y0 f x0 x x0 3 函数f x 的导函数称函数f x 为f x 的导函数 导函数有时也记作y 4 基本初等函数的导数公式 cosx 0 sinx axlna a 0 nxn 1 ex 5 导数运算法则 1 f x g x 2 f x g x 3 g x 0 6 复合函数的导数复合函数y f g x 的导数和函数y f u u g x 的导数间的关系为y 即y对x的导数等于的导数与的导数的乘积 a 0 且a 1 f x g x f x g x f x g x y u y对u u对x x u x 基础自测1 在曲线y x2 1的图象上取一点 1 2 及附近一点 1 x 2 y 则为 a x 2b x 2c x 2d 2 x 解析 y 1 x 2 1 12 1 x 2 2 x x 2 c 2 设正弦函数y sinx在x 0和x 附近的平均变化率为k1 k2 则k1 k2的大小关系为 a k1 k2b k1 k2c k1 k2d 不确定解析 y sinx y sinx cosx k1 cos0 1 k2 cos 0 k1 k2 a 3 曲线y x3 3x2 1在点 1 1 处的切线方程为 a y 3x 4b y 3x 2c y 4x 3d y 4x 5解析由y 3x2 6x在点 1 1 的值为 3 故切线方程为y 1 3 x 1 即y 3x 2 b 4 若函数y f x 在r上可导且满足不等式xf x f x 恒成立 且常数a b满足a b 则下列不等式一定成立的是 a af b bf a b af a bf b c af a bf b d af b bf a 解析令g x xf x g x xf x f x 0 g x 在r上为增函数 a b g a g b 即af a bf b b 5 设p为曲线c y x2 2x 3上的点 且曲线c在点p处切线倾斜角的取值范围是 0 则点p横坐标的取值范围为 a b 1 0 c 0 1 d 解析 y x2 2x 3 y 2x 2 曲线在点p x0 y0 处切线倾斜角的取值范围是 0 曲线在点p处的切线斜率0 k 1 0 2x0 2 1 1 x0 a 题型一利用导数的定义求函数的导数 例1 求函数y 在x0到x0 x之间的平均变化率 紧扣定义进行计算 解 思维启迪 题型分类深度剖析 探究提高求函数f x 平均变化率的步骤 求函数值的增量 f f x2 f x1 计算平均变化率解这类题目仅仅是简单套用公式 解答过程相对简单 只要注意运算过程就可以了 知能迁移1利用导数定义 求函数在x 1处的导数 解方法一 导数定义法 方法二 导函数的函数值法 题型二导数的运算 例2 求下列函数的导数 1 y 2x3 x 6 2 y 3 y x 1 x 2 x 3 4 y sin 1 2cos2 5 如式子能化简的 可先化简 再利用导数公式和运算法则求导 思维启迪 解 1 y 6x2 1 3 方法一y x2 3x 2 x 3 x3 6x2 11x 6 y 3x2 12x 11 方法二y x 1 x 2 x 3 x 1 x 2 x 3 x 1 x 2 x 1 x 2 x 3 x 1 x 2 x 2 x 1 x 3 x 1 x 2 2x 3 x 3 x 1 x 2 3x2 12x 11 求函数的导数要准确地把函数分割为基本函数的和 差 积 商及其复合运算 再利用运算法则求导数 在求导过程中 要仔细分析函数解析式的结构特征 紧扣求导法则 联系基本函数求导公式 对于不具备求导法则结构形式的要适当恒等变形 如 3 小题 对于比较复杂的函数 如果直接套用求导法则 会使求导过程繁琐冗长 且易出错 此时 可将解析式进行合理变形 转化为较易求导的结构形式 再求导数 如 2 4 5 都是如此 但必须注意变形的等价性 避免不必要的运算失误 探究提高 知能迁移2求下列函数的导数 1 y 5x2 4x 1 2 y 2x2 1 3x 1 3 y 解 1 y 5x2 4x 1 5x2 4x 1 10 x 4 2 y 2x2 1 3x 1 6x3 2x2 3x 1 y 6x3 2x2 3x 1 6x3 2 x2 3x 1 18x2 4x 3 例3 求下列复合函数的导数 1 y 2x 3 5 2 y 3 y sin2 2x 4 y ln 2x 5 思维启迪先正确地分析函数是由哪些基本函数经过怎样的顺序复合而成 求导时 可设出中间变量 注意要逐层求导不能遗漏 每一步对谁求导 不能混淆 解 1 设u 2x 3 则y 2x 3 5由y u5与u 2x 3复合而成 y f u u x u5 2x 3 5u4 2 10u4 10 2x 3 4 2 设u 3 x 则y 由y u与u 3 x复合而成 由复合函数的定义可知 中间变量的选择应是基本函数的结构 解这类问题的关键是正确分析函数的复合层次 一般是从最外层开始 由外向内 一层一层地分析 把复合函数分解成若干个常见的基本函数 逐步确定复合过程 探究提高 3 设y u2 u sinv v 2x 4 设y lnu u 2x 5 则 知能迁移3求下列复合函数的导数 1 y 2 y x 3 解 1 y 3 1 3x 4 1 3x 题型三导数的几何意义 例4 12分 已知曲线方程为y x2 1 求过a 2 4 点且与曲线相切的直线方程 2 求过b 3 5 点且与曲线相切的直线方程 1 a在曲线上 即求在a点的切线方程 2 b不在曲线上 设出切点求切线方程 解 1 a在曲线y x2上 过a与曲线y x2相切的直线只有一条 且a为切点 2分 由y x2 得y 2x y x 2 4 4分因此所求直线的方程为y 4 4 x 2 即4x y 4 0 6分 思维启迪 2 方法一设过b 3 5 与曲线y x2相切的直线方程为y 5 k x 3 即y kx 5 3k 8分y kx 5 3k y x2得x2 kx 3k 5 0 k2 4 3k 5 0 整理得 k 2 k 10 0 k 2或k 10 10分所求的直线方程为2x y 1 0 10 x y 25 0 12分方法二设切点p的坐标为 x0 y0 由y x2得y 2x x x0 2x0 8分由已知kpa 2x0 即 2x0 又y0 代入上式整理得 x0 1或x0 5 10分 切点坐标为 1 1 5 25 所求直线方程为2x y 1 0 10 x y 25 0 12分 由 探究提高 1 解决此类问题一定要分清 在某点处的切线 还是 过某点的切线 的问法 2 解决 过某点的切线 问题 一般是设出切点坐标为p x0 y0 然后求其切线斜率k f x0 写出其切线方程 而 在某点处的切线 就是指 某点 为切点 3 曲线与直线相切并不一定只有一个公共点 当曲线是二次曲线时 我们知道直线与曲线相切 有且只有一个公共点 这种观点对一般曲线不一定正确 知能迁移4已知曲线 1 求曲线在x 2处的切线方程 2 求曲线过点 2 4 的切线方程 解 1 y x2 在点p 2 4 处的切线的斜率k y x 2 4 曲线在点p 2 4 处的切线方程为y 4 4 x 2 即4x y 4 0 2 设曲线与过点p 2 4 的切线相切于点 则切线的斜率k y x x 切线方程为y 即 0 点p 2 4 在切线上 4 即 x0 1 x0 2 2 0 解得x0 1或x0 2 故所求的切线方程为4x y 4 0或x y 2 0 方法与技巧1 在对导数的概念进行理解时 特别要注意f x0 与 f x0 是不一样的 f x0 代表函数f x 在x x0处的导数值 不一定为0 而 f x0 是函数值f x0 的导数 而函数值f x0 是一个常量 其导数一定为0 即 f x0 0 2 对于函数求导 一般要遵循先化简 再求导的基本原则 求导时 不但要重视求导法则的应用 而且要特别注意求导法则对求导的制约作用 在实施化简时 首先必须注意变换的等价性 避免不必要的运算失误 思想方法感悟提高 3 复合函数的求导方法求复合函数的导数 一般是运用复合函数的求导法则 将问题转化为基本函数的导数解决 1 分析清楚复合函数的复合关系是由哪些基本函数复合而成的 适当选定中间变量 2 分步计算中的每一步都要明确是对哪个变量求导 而其中特别要注意的是中间变量的关系 3 根据基本函数的导数公式及导数的运算法则 求出各函数的导数 并把中间变量转换成自变量的函数 4 复合函数的求导熟练以后 中间步骤可以省略 不必再写出函数的复合过程 失误与防范1 利用导数定义求导数时 要注意到x与 x的区别 这里的x是常量 x是变量 2 利用公式求导时要特别注意除法公式中分子的符号 防止与乘法公式混淆 3 求曲线切线时 要分清点p处的切线与过p点的切线的区别 前者只有一条 而后者包括了前者 4 曲线的切线与曲线的交点个数不一定只有一个 这和研究直线与二次曲线相切时有差别 一 选择题1 一质点沿直线运动 如果由始点起经过t秒后的位移为 那么速度为零的时刻是 a 0秒b 1秒末c 2秒末d 1秒末和2秒末解析 v s t t2 3t 2 令v 0 得t1 1 t2 2 d 定时检测 2 若点p是曲线y x2 lnx上任意一点 则点p到直线y x 2的最小距离为 a 1b c d 解析过点p作y x 2的平行直线 且与曲线y x2 lnx相切 设p x0 x lnx0 则k y x x0 2x0 2x0 1 x0 1或x0 舍去 p 1 1 b 3 若曲线y x4的一条切线l与直线x 4y 8 0垂直 则l的方程为 a 4x y 3 0b x 4y 5 0c 4x y 3 0d x 4y 3 0解析y 4x3 4 得x 1 即切点为 1 1 所以过该点的切线方程为y 1 4 x 1 整理得4x y 3 0 a 4 曲线y ex在点 2 e2 处的切线与坐标轴所围三角形的面积为 a b 2e2c e2d 解析 点 2 e2 在曲线上 切线的斜率k y x 2 ex x 2 e2 切线的方程为y e2 e2 x 2 即e2x y e2 0 与两坐标轴的交点坐标为 0 e2 1 0 s d 5 2009 全国 理 9 已知直线y x 1与曲线y ln x a 相切 则a的值为 a 1b 2c 1d 2解析设直线y x 1与曲线y ln x a 的切点为 x0 y0 则y0 1 x0 y0 ln x0 a 又y 即x0 a 1 又y0 ln x0 a y0 0 x0 1 a 2 b 6 2009 安徽文 9 设函数其中 则导数f 1 的取值范围是 a 2 2 b c 2 d 2 解析由已知f x sin x2 cos x d 二 填空题7 如图所示 函数f x 的图象是折线段abc 其中a b c的坐标分别为 0 4 2 0 6 4 则f f 0 用数字作答 解析由a 0 4 b 2 0 可得线段ab所在直线的方程为f x 2x 4 0 x 2 同理bc所在直线的方程为f x x 2 2 x 6 2x 4 0 x 2 x 2 2 x 6 所以f 0 4 f 4 2 f 1 2 答案2 2 所以f x 8 2009 福建理 14 若曲线f x ax5 lnx存在垂直于y轴的切线 则实数a的取值范围是 解析 f x 5ax4 x 0 由题知5ax4 0在 0 上有解 即a 在 0 上有解 x 0 0 a 0 0 9 2009 江苏 9 在平面直角坐标系xoy中 点p在曲线c y x3 10 x 3上 且在第二象限内 已知曲线c在点p处的切线斜率为2 则点p的坐标为 解析设p x0 y0 x0 0 由题意知 2 4 x0 2 y0 15 p点的坐标为 2 15 2 15 三 解答题10 求曲线f x x3 3x2 2x过原点的切线方程 解f x 3x2 6x 2 设切线的斜率为k 1 当切点是原点时k f 0 2 所以所求曲线的切线方程为y 2x 2 当切点不是原点时 设切点是 x0 y0 则有y0 又k 由 得 所求曲线的切线方程为 11 设t 0 点p t 0 是函数f x x3 ax与g x bx2 c的图象的一个公共点 两函数的图象在点p处有相同的切线 试用t表示a b c 解因为函数f x g x 的图象都过点 t 0 所以f t 0 即t3 at 0 因为t 0 所以a t2 g t 0 即bt2 c 0 所以c ab 又因为f x g x 在点 t 0 处有相同的切线 所以f t g t 而f x 3x2 a g x 2bx 所以3t2 a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度财务人员年中述职报告
- 电费账务基本知识培训课件
- 电费电价知识培训内容课件
- 高边坡施工安全培训课件
- 高考法国大革命课件
- 电脑知识产品培训课件
- 建设工程士地勘测定界服务合同
- 电脑基础知识培训线下课件
- 电网运行知识培训课件
- 电网培训知识点课件
- 2025年吉林省中考语文真题(含答案)
- 2025-2030电动船舶电池系统安全标准构建与产业链配套能力报告
- 2025高级会计师考试试题及答案
- 数字时代群体冲突演变-洞察及研究
- 工地建筑钢板租赁合同范本
- 光传输业务配置课件
- 2025年公安辅警招聘知识考试题(附答案)
- (标准)便利店转让合同协议书带烟证
- 2025年辽宁省地质勘探矿业集团有限责任公司校园招聘笔试备考题库带答案详解
- 廉洁文化知识试题(含答案)
- 2025年青海辅警招聘考试题及答案
评论
0/150
提交评论