已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,如有侵权,请联系网站删除Machine Manufacturing System Solutions for Industrial Sensors/Field TransmittersDecember 1, 2011 By: Deepa Kalyanaraman, Texas Instruments Inc. Sensors In this article, we review some of the latest trends and system considerations involved when designing sensors and transmitters for industrial automation applications.Industrial sensors and field transmitters are an integral part of the factory automation and process control industries. Measurement accuracy and precision are critical to tightly controlled process loops, as well as for single-point measurement nodes. This article leads you through the design decisionsconcerning the signal chain, power source, and interfacethat can help or hinder you from getting the most out of your sensors and your system as a whole. You will see how to translate system demands into device specifications, and clearly understand the design decisions and tradeoffs involved in maximizing the impact of industrial sensor and field transmitter electronics in the process.First, lets consider a typical factory floor. Most factory floors can be broadly segmented into a hierarchy of three levels: the enterprise level, the control level, and the field level as shown in Figure 1. The enterprise level is, in essence, the office network, the backbone of servers and PCs networked to log all of the data and perform higher-level functions. The control level takes us into nodes and clusters of programmable logic controllers (PLCs), human-machine interface (HMI) panels, and DCS/SCADA and similar systems. This equipment issues commands to, and collects the resultant data from, the lower levels, processing this into actionable information, which can then be used to define and drive the actions of the control loop. The lowest level in our hierarchy is the field level and it is perhaps the most critical level of the three, because the equipment in this level includes the sensors, transmitters, and actuators that perform the actual manufacturing tasks and relay back critical data.Figure 1. Typical factory floor hierarchyFor example, in a pharmaceutical bottling plant, different constituent chemicals are mixed in the correct proportions to create a bottle of the latest drug. Every step in the process needs to be executed at the right temperature, pressure, and humidity conditions to ensure that the quality and characteristics of the resultant mixture are as desired. This requires the constant measurement of multiple variables, the timely transmission of data, and the instantaneous response of the equipment to the control signals. The various sensors, along with the field transmitters, are what allow any process to become a controlled process, and designing these systems to take measurements with a high degree of precision is critical to the functioning of any control loop.Depending on the size of the factory and the complexity of the controls needed, the factory floor could have thousands of sensors. As such it is important to understand what a sensor looks like on paper to understand how it will act when put into your control loop. Figure 2 shows a snapshot of typical information from a sensor/field transmitter datasheet. While it can be hard to extract exact operational characteristics from the datasheet, it will give you a ballpark idea of how a device will perform, especially when compared to other sensors that might already be in use in the system. Datasheet information can be broken down into input, output, power, and isolation specifications. This example in Figure 2 is for a popular 8-channel temperature transmitter that can be configured in multiple ways, e.g., for 2- or 3-wire RTD, thermistor, or thermocouple inputs.Figure 2. Typical sensor/field transmitter datasheetUnderstanding Sensor Front EndsWhen we take a closer look at the design of the sensor, you find that, irrespective of the type of physical parameter you are measuring, sensor front ends can be broadly classified into a few major categories: resistive, capacitive, magnetic/inductive, and current sense front ends. Sensors basically produce a change in resistance, capacitance, current, or voltage in response to a change in the measured variable. Figure 3 shows some common examples of different sensors and where they fall in these categories, and also lists some key attributes to keep in mind while designing with each of them. In addition, the table in Figure 3 includes amplifiers and data converters from Texas Instruments that are well-suited to each specific implementation.Figure 3. Common types of sensors and significant attributesIf we take a look at the system block diagrams for different types of sensors, such as those shown in Figure 4, we see that only the input signal chain is unique to the type of sensor element. The remaining elements are often very similar, if not identical, from sensor to sensor.Figure 4. System block diagrams(Click image for larger version)The interface between the sensor element and the data processing circuitry begins with an amplification stage that may be integrated into the data converter (as a programmable-gain amplifier or PGA) or implemented as a stand-alone discrete device. The amplifier performs several functions, which may include amplification, attenuation, filtering, buffering, offset adjustment, or level shifting. Because the amplifier is a key element of the input signal chain, it is important to select one that is optimized for your sensor element.The analog-to-digital converter (ADC) converts the conditioned signal to an output that can be fed directly into a processor or microcontroller (MCU). ADC selection involves several tradeoffs, one of the most important of which is resolution versus speed. The processor runs various system routines, calibration routines, and compensation algorithms to further process the collected information, filtering out and/or correcting for known system errors. Finally, the processed data are sent out through an isolation block into either traditional analog lines or a digital bus or wireless interface. The isolation is essential to avoid ground loops, to provide safety from high voltages and surges, and to reduce common-mode noise. Isolation voltage specifies the transient voltage rating across the barrier while operating voltage levels specifies the continuous working voltage across the isolation barriers, which are typically specified as Vrms or Vp-p.Output StageWhen considering the output or communication stage of the sensor module, there are a plethora of options. While the traditional analog 420 mA output continues to dominate the sensor output configurations, newer digital bus standards such as Profibus, IO Link, and others are seeing increased acceptance. These digital fieldbus protocols offer advantages when it comes to maintenance and repair, in addition to providing seamless communication and improved interoperability. It takes only a few seconds to download new parameter settings into the sensor via the digital bus, removing the need for manual calibration by allowing on-the-fly correction and reducing system downtime when replacing failed sensors. The continuous monitoring and diagnostics available when using the digital protocols also support need-based rather than routine maintenance programs.PowerThe power budget of the sensor module is the next most important aspect to consider. Understanding the power source is critical to the decisions you make when designing the sensor electronics. Industrial sensors are typically powered in one of three ways: Line-poweredpowered by a dedicated VDC line, Loop poweredpowered off the 420 mA loop, or Battery poweredpowered by batteries for portable transmitters. The power topology influences the design. For instance, loop-powered transmitters do not have a dedicated voltage supply and therefore all of the power for the sensor needs to be scavenged off the loop current, restricting the design to components that can run on a total of about 33.5 mA or less (the sum total power budget for all of the silicon). Although battery-powered topologies may give you more initial headroom, the most important consideration is the battery runtime. Designs for both loop- and battery-powered sensors need amplifiers with low quiescent current, low-power data converters, and ultra low-power processors. Line-powered transmitters typically have significant headroom in the power budget and do not impose such stringent conditions on device selection.Regardless of the power source, the overall efficiency and the heat generated by power conversion play a key role when making design decisions for the confined environment inside a sensor. The DC/DC step-down converters, buck-boost regulators, and linear regulators selected for such low-power designs also need to have low quiescent current, and must be able to operate in industrial high-voltage realms.The list of questions below makes a good checklist before you start designing your next industrial sensor module.ChecklistNotesWhy are you taking measurements and collecting data? What is the impact of the data? What do you need to know in order to make a decision? What parameter are you measuring? Make sure you understand the sensing technology used to measure the desired physical parameters. What attributes, specific to the particular sense mechanism, do you need to be aware of? How many channels will you need? Do you need to make multiple measurements? Are the measurements sequential or simultaneous? This last decision determines the appropriate ADC architecture, simultane
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私家车转卖合同范本
- 的食品加工合同范本
- 直流屏维修合同范本
- 租用羽毛球馆协议书
- 2026年消防中控员职业资格考试测试题及参考答案
- 个人房屋装修合同 (一)
- 2026年高端私人影院建设公司行业设计趋势调研管理制度
- 营养与膳食脂类
- 川大海商法学试题两套
- 2025-2026学年安徽省蚌埠市A层高中高一上学期10月月考地理试题(解析版)
- GB/T 25622.1-2023土方机械司机手册第1部分:内容和格式
- 污水厂管网运行管理方案
- 小区开放对道路的影响
- (完整word版)高中英语3500词汇表
- 水利工程概论练习题+答案
- 建筑施工安全检查评分汇总表及评分表2011版自动计算
- 设计事理学方法论-课件
- 纤维增强混凝土
- 世界著名童话故事英文绘本故事丑小鸭
- GB/T 224-2019钢的脱碳层深度测定法
- 涉密文件借阅登记表
评论
0/150
提交评论